МОДЕЛЬ И ПРОЯВЛЕНИЯ ТЕПЛОВОГО ИЗЛУЧЕНИЯ В ПОСЛЕСВЕЧЕНИЯХ ГАММА-ВСПЛЕСКОВ

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

ГАИШ МГУ, ИТЭФ

26 февраля 2013 г.

ΓΑΝΗ ΜΕΥ ΝΤЭΦ

< ∃→

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

ВВЕДЕНИЕ

Идея работы – показать

- уместность концепции теплового излучения в послесвечениях ГВ (наравне с традиционным нетепловым)
- важность радиационно-гидродинамических расчётов при моделировании послесвечений

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

ГАИШ МГУ, ИТЭФ

Что такое GRB:

- Первичное гамма-излучение (prompt emission) + послесвечение (от рентгена до радио), степенные спектры
- Стандартная модель: массивная звезда → коллапс → нестационарная гипераккреция → релятивистское истечение (джет) → ударные волны (внутренние, внешние, обратные ...)→ ускорение е⁻, усиление В → Synchrotron, CS
- ∃ и нестандартные модели ...

ΓΑΝΗ ΜΕΥ ΝΤЭΦ

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

Почему ТИ в послесвечениях?

- \exists тепловая компонента в первичном γ и раннем рентгене
 - в наблюдениях (Ryde & Pe'er 2009, Campana et al. 2006, Page et al. 2011),
 - в моделях (*Blinnikov* et al., 1999)
 - в 2D rel-HD симуляциях (Lazzati et al. 2009, Nagakura et al. 2011)

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

ГАИШ МГУ, ИТЭФ

Почему ТИ в послесвечениях?

Общие соображения: много энергии $(10^{51} - 10^{53} \text{ эрг}) +$ много вещества (вокруг массивной звезды) \Rightarrow ТИ

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

ГАИШ МГУ, ИТЭФ

Почему ТИ в послесвечениях?

Общие соображения: много энергии $(10^{51} - 10^{53}$ эрг) + много вещества (вокруг массивной звезды) \Rightarrow ТИ

Наконец, собственно **горбы сверхновых** в оптике (*Woosley & Bloom 2006, Cano et al. 2011*), а также иррегулярности

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

ГАИШ МГУ, ИТЭФ

Идея: тонкая плотная оболочка испытвает нагрев излучением и джетом GRB

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

ГАИШ МГУ, ИТЭФ

э

< 口 > < 同

< ∃ >

модель и проявления теплового излучения в послесвечениях гамма-всплесков

ОСОБЕННОСТИ ЗАДАЧИ О ТИ GRB AG

- Нестационарность (и неавтомодельность)
- Перенос излучения + изменение (ионизационного)
 состояния + гидродинамика
- Широкий диапазон масштабов по времени, координатам и частотам
- при важной роли комптоновского рассеяния (в самом общем варианте) – связь частотных и пространственных масштабов.
- Желательны неодномерность, кинетический подход и релятивизм ...

ΓΑΝΗ ΜΕΥ ΝΤЭΦ

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

Код STELLA

- Изначально для расчётов кривых блеска сверхновых от ИК до рентгена (Blinnikov et.al 1998)
- Уравнение переноса в моментном приближении (замыкание через Эддингтоновские множители) + Лагранжева гидродинамика
- УрЧП сводятся к системе ОДУ методом линий + полностью неявная схема с динамическим контролем шага и порядка (Brayton, Gustavson & Hachtel, 1972)
- Взаимное влияние излучения и движения вещества: непрозрачность при расширении, баланс сил и энергии.
- Возможность введения различных механизмов в коэффициенты поглощения, излучения, ионизационного баланса ...
- В рамках приближений: одномерие, нерелятивизм (все эффекты O(v/c)), однотемпературность

ГАИШ МГУ. ИТЭФ

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

Доработка кода

 Перенос и поглощение
 γ-излучения (фотоионизация, комптоновское рассеяние на свободных и связанных электронах)

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

ГАИШ МГУ, ИТЭФ

модель и проявления теплового излучения в послесвечениях гамма-всплесков

Доработка кода

- Перенос и поглощение γ-излучения (фотоионизация, комптоновское рассеяние на свободных и связанных электронах)
- Нестационарная ионизационная кинетика (фотоионизация, CS, столкновительные процессы) в областях нагрева.

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

ГАИШ МГУ, ИТЭФ

Доработка кода

- Перенос и поглощение γ-излучения (фотоионизация, комптоновское рассеяние на свободных и связанных электронах)
- Нестационарная ионизационная кинетика (фотоионизация, CS, столкновительные процессы) в областях нагрева.
- Учёт коллимации, космологического красного смещения

$$L_{
u}(t) = 8\pi^2 \int\limits_{\mu_{min}}^{1} R_{out}^2(t'_{\mu}) \mu I_{
u}(t'_{\mu},\mu) \mathrm{d}\mu, \qquad t'_{\mu} + R_{out}(t'_{\mu})(1-\mu)/c = t$$

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

ГАИШ МГУ, ИТЭФ

Идея: тонкая плотная оболочка испытвает нагрев излучением и джетом GRB

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

ГАИШ МГУ, ИТЭФ

э

4 同

< ∃ >

модель и проявления теплового излучения в послесвечениях гамма-всплесков

Оболочка: Столкновение двух выбросов, $n \sim 10^{10}$ см⁻³, $R = 10^{16}$ см, $\delta R = 5 \cdot 10^{13}$ см, химсостав как у внешних слоёв звезды $100 - 200 M_{\odot}$, испытавшей PI пульсации (Woosley, Blinnikov, Heger), $\tau_T \approx 1$, 100 зон

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

ГАИШ МГУ, ИТЭФ

- **Оболочка:** Столкновение двух выбросов, $n \sim 10^{10}$ см⁻³, $R = 10^{16}$ см, $\delta R = 5 \cdot 10^{13}$ см, химсостав как у внешних слоёв звезды $100 200 M_{\odot}$, испытавшей PI пульсации (Woosley, Blinnikov, Heger), $\tau_T \approx 1$, 100 зон
- γ -излучение: $E_{iso} = 4.5 \cdot 10^{53}$ эрг, $\varepsilon_{peak} = 330$ кэВ, Band function ($\alpha = 0.9$, $\beta = 2, 1$ кэВ 30 МэВ), 3хFRED-пульса по 1.5 с, общая длительность 16 с, $\theta = 10^{\circ}$, 100 энергий.

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

ГАИШ МГУ, ИТЭФ

- **В Оболочка:** Столкновение двух выбросов, $n \sim 10^{10}$ см⁻³, $R = 10^{16}$ см, $\delta R = 5 \cdot 10^{13}$ см, химсостав как у внешних слоёв звезды $100 200 M_{\odot}$, испытавшей PI пульсации (Woosley, Blinnikov, Heger), $\tau_T \approx 1$, 100 зон
- γ -излучение: $E_{iso} = 4.5 \cdot 10^{53}$ эрг, $\varepsilon_{peak} = 330$ кэВ, Band function ($\alpha = 0.9$, $\beta = 2, 1$ кэВ 30 МэВ), 3хFRED-пульса по 1.5 с, общая длительность 16 с, $\theta = 10^{\circ}$, 100 энергий.
- Джет = "тепловая бомба" во внутренней зоне, $E = E_{iso}$, $\delta t = \delta R_1/c \approx 17$ с с задержкой $R/(2c\Gamma^2) \approx 200$ с относительно γ -лучей

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

ГАИШ МГУ, ИТЭФ

- **В Оболочка:** Столкновение двух выбросов, $n \sim 10^{10}$ см⁻³, $R = 10^{16}$ см, $\delta R = 5 \cdot 10^{13}$ см, химсостав как у внешних слоёв звезды $100 200 M_{\odot}$, испытавшей PI пульсации (Woosley, Blinnikov, Heger), $\tau_T \approx 1$, 100 зон
- γ -излучение: $E_{iso} = 4.5 \cdot 10^{53}$ эрг, $\varepsilon_{peak} = 330$ кэВ, Band function ($\alpha = 0.9$, $\beta = 2$, 1 кэВ 30 МэВ), 3хFRED-пульса по 1.5 с, общая длительность 16 с, $\theta = 10^{\circ}$, 100 энергий.
- Джет = "тепловая бомба" во внутренней зоне, $E = E_{iso}$, $\delta t = \delta R_1/c \approx 17$ с с задержкой $R/(2c\Gamma^2) \approx 200$ с относительно γ -лучей
- Тепловое излучение: 50 тыс. Å 60 кэВ, 120 частот

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

ГАИШ МГУ, ИТЭФ

- Оболочка: Столкновение двух выбросов, $n \sim 10^{10}$ см⁻³, $R = 10^{16}$ см, $\delta R = 5 \cdot 10^{13}$ см, химсостав как у внешних слоёв звезды $100 200 M_{\odot}$, испытавшей PI пульсации (Woosley, Blinnikov, Heger), $\tau_T \approx 1$, 100 зон
- γ -излучение: $E_{iso} = 4.5 \cdot 10^{53}$ эрг, $\varepsilon_{peak} = 330$ кэВ, Band function ($\alpha = 0.9$, $\beta = 2, 1$ кэВ 30 МэВ), 3хFRED-пульса по 1.5 с, общая длительность 16 с, $\theta = 10^{\circ}$, 100 энергий.
- Джет = "тепловая бомба" во внутренней зоне, $E = E_{iso}$, $\delta t = \delta R_1/c \approx 17$ с с задержкой $R/(2c\Gamma^2) \approx 200$ с относительно γ -лучей
- Тепловое излучение: 50 тыс. Å 60 кэВ, 120 частот
- Граничные условия: Обе границы прозрачны + фон 0.1*ВВ(2700 К) на внутренней.

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

ГАИШ МГУ, ИТЭФ

< ∃ >

Профили скорости и температуры

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

ГАИШ МГУ, ИТЭФ

• Разрыв в непрозрачности и свойствах ТИ на фронте гамма-лучей

 1 Однако, для длительного степенного послесвечения, всё же необходимы "окна" в оболочке, (

ГАИШ МГУ. ИТЭФ

чтобы часть джета осталась релятивистской

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

- Разрыв в непрозрачности и свойствах ТИ на фронте гамма-лучей.
- Полная ионизация на шкале ~ 10⁻³ с (остаются только водородоподобные ионы самых тяжёлых элементов, например, FeXXVI в концентрациях 0.1 10 см⁻³), рекомбинация в течение нескольких 10 с ⇒ гамма-всплеск и раннее рентгеновское послесвечения наблюдаемы¹
- Сильный нагрев и сильные потери (ff, fb), температура (в Лагранжевой зоне) колеблется вслед за плотностью гамма-лучей (2-10 млн К).

- Разрыв в непрозрачности и свойствах ТИ на фронте гамма-лучей
- Полная ионизация на шкале ~ 10⁻³ с (остаются только водородоподобные ионы самых тяжёлых элементов, например, FeXXVI в концентрациях 0.1 10 см⁻³), рекомбинация в течение нескольких 10 с ⇒ гамма-всплеск и раннее рентгеновское послесвечения наблюдаемы¹
- Сильный нагрев и сильные потери (ff, fb), температура (в Лагранжевой зоне) колеблется вслед за плотностью гамма-лучей (2-10 млн К).
- Давление излучения = ~ 10⁴ от газового ⇒ чувствительность динамики к непрозрачности (и граничному условию)

модель и проявления теплового излучения в послесвечениях гамма-всплесков

- Разрыв в непрозрачности и свойствах ТИ на фронте гамма-лучей
- Полная ионизация на шкале ~ 10⁻³ с (остаются только водородоподобные ионы самых тяжёлых элементов, например, FeXXVI в концентрациях 0.1-10 см $^{-3}$), рекомбинация — в течение нескольких 10 с \Rightarrow гамма-всплеск и раннее рентгеновское послесвечения наблюдаемы¹
- Сильный нагрев и сильные потери (ff, fb), температура (в Лагранжевой зоне) колеблется вслед за плотностью гамма-лучей (2-10 млн К).
- ∎ Давление излучения = $\sim 10^4$ от газового ⇒ чувствительность динамики к непрозрачности (и граничному условию)
- Радиационное охлаждение, размывание и торможение ударной волны

 1 Однако, для длительного степенного послесвечения, всё же необходимы "окна" в оболочке, чтобы часть джета осталась релятивистской ГАИШ МГУ. ИТЭФ

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

Задержка и красное смещение

$$L_{\nu}(t) = 8\pi^2 \int_{\mu_{min}}^{1} R_{out}^2(t'_{\mu}) \mu I_{\nu}(t'_{\mu}, \mu) d\mu, \text{ is } t'_{\mu} + R_{out}(t'_{\mu})(1-\mu)/c = t$$

- $\delta t = (1 \cos \theta)R(t \delta t)/c \approx 5000$ с больше $\delta R/c \approx 1700$ с. Нарастание светимости на шкале δt , спад на шкале нагрева/охлаждения \Rightarrow резко очерченные плато в рентгене
- в Космологические эффекты: $t=(1+z)t_0, \ \nu=\nu_0/(1+z), F_{\nu}(\nu)=L_{\nu0}(\nu0)/(4\pi(1+z)D_L^2(z))$

ГАИШ МГУ. ИТЭФ

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

Светимости и спектры

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

ГАИШ МГУ, ИТЭФ

4 同

Рентген: плато

• ∃ "Дефицит жёсткости" из-за однотемпературности и неучёта рассеянного

 γ -излучения в кривой ТИ

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

модель и проявления теплового излучения в послесвечениях гамма-всплесков

ГАИШ МГУ, ИТЭФ

R-величины и цвета

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

ГАИШ МГУ, ИТЭФ

Оптические послесвсечения: иррегулярности, горбы

• Послесвечения с иррегулярностями систематически более "синие"

GRB	z	$E^{1}_{\gamma,iso}$	R_{bump}^4	t ⁵ _{peak}	t ⁶ bump	β
		10 ⁵³ эрг	зв.вел.	сут	сут	(средн.)
020124	3.198	1.6	18.36	0.47	\approx 7	0.56
021004	2.3351	0.1 ²	16.2	0.08	0.5	0.67
			19.05	0.9	1.7	
030328	1.52	3.3	19.4	0.28	1.2	0.36
030429X	2.65	0.13 ³	20.9	1.2	\approx 4	0.22
050904	6.29	6-32	20.5	0.32	\approx 7	
Model	any	4.5	Рис. (3)	Рис. (3)	Рис. (3)	Рис. (2),(4)

 1 — приведено к диапазону 1 кэВ — 10 МэВ. 2 — в диапазоне 15-150 кэВ, за отсутствием спектров в более жёстких областях. 3 — пиковая светимость была 5 · 10⁵³ эрг/с

- - 4 回 > - 4 回 > - 4 回 >

ΓΑΝΗΙ ΜΕΥ ΝΤЭΦ

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

модель и проявления теплового излучения в послесвечениях гамма всплесков

Оптика: иррегулярности GRB 020124, 050904

• Модель иррегулярности. Плавное начало – синхротронное излучение релятивистской УВ на сильном контрасте плотности (*Nakar & Granot, 2007*), плато и крутое окончание – ТИ. Характерное время перехода на отклонение д.б. $\sim 10t_{\gamma-sh}$ ~ 2000 с, что с учётом (1+z) соответствует наблюдаемым моментам начала.

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

гаиш мгу, итэф

КВАЗИСВЕРХНОВАЯ

Для 1D – экзотика, но может быть ключом к пониманию 2-3-D эффектов (термализация большого количества энергии в областях с контрастом непрозрачности) и объяснению связи GRB-SN, без налолжения ограничений на "центральную машину"

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

ГАИШ МГУ, ИТЭФ

КВАЗИСВЕРХНОВАЯ

- Непрозрачная внутренняя граница (т.е. предельный случай). ⇒ Излучение "разрывает" оболочку:
- Скорости разлёта $\approx 6 \cdot 10^4$ км/с, Кривая блеска: вспышка (аналог выхода УВ) \rightarrow степенной спад \rightarrow горб как у яркой SNIIn

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

ГАИШ МГУ, ИТЭФ

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

ГАИШ МГУ, ИТЭФ

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

ГАИШ МГУ, ИТЭФ

выводы

 Тепловое излучение (структур околозвёздной среды) имеет право быть важной частью моделей послесвечений, также как и prompt emission

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

ГАИШ МГУ, ИТЭФ

выводы

- Тепловое излучение (структур околозвёздной среды) имеет право быть важной частью моделей послесвечений, также как и prompt emission
- Взаимосвязь эффектов переноса, гидродинамики, релятивизма, микрофизики и особо – комптоновского рассеяния, ставит задачу согласованного их моделирования для объяснения наблюдений и физики гамма-всплесков и их послесвсечений. Это не "роскошь", а насущная потребность.

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

ГАИШ МГУ, ИТЭФ

выводы

- Тепловое излучение (структур околозвёздной среды) имеет право быть важной частью моделей послесвечений, также как и prompt emission
- Взаимосвязь эффектов переноса, гидродинамики, релятивизма, микрофизики и особо – комптоновского рассеяния, ставит задачу согласованного их моделирования для объяснения наблюдений и физики гамма-всплесков и их послесвсечений. Это не "роскошь", а насущная потребность.
- Возможность сверхновоподобных взрывов в околозвёздном веществе ⇒ интерпретация связи GRB-SN + бо́льшая свобода для моделей "центральной машины".

Д.А. Бадьин, К.А. Постнов, С.И. Блинников

ГАИШ МГУ, ИТЭФ