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DM paradigm

95% of constituting stuff is acting only 
gravitationally (to our best present 
knowledge) 



  

DM paradigm

● 1846 – Le Verrier and Adams discover new 
planet  Neptune via its action on the  orbit 
of the Uranus 

● 1859 – Le Verrier(!) reported that the 
precession of the Mercury orbit cannot  be 
fully explained by the action of known 
matter distribution  in the Solar system

● 2 ways out:
● New “specie” of matter(“Neptune”)
● Modification of the gravitation laws 
(“Einstein”)



  

DM paradigm

● So  now we also should either add DM or 
modify the GR 

● The problem is that there's no room for 
new particles in the Standard Model. And 
the SM is very well (up to 10-9 precision) 
tested experimentally—so any new 
extension is not so easy to plug in.

● GR is very well tested as well (although 
when we are dealing with the 
cosmological scales we are making a 
huge leap forward), so construction of 
viable MG theories is extremely 
challenging.



  

DM paradigm

● Let's follow the (C)DM path
● SM extension in a very broad mass 
range:

● Axions and ALPs (10-9-10-6 eV)
● Sterile neutrinos (~keV)
● Neutralinos, e.g. SUSY WIMPS (~GeV-
TeV)

● WIMPzillas (>~1012 GeV)
●...
● More and more and more

OR
Primordial Black Holes



  

PBHs

● Perfect candidate:
● Stable (if massive enough)
● Cold
● Very weakly interacting (i.e. Dark)

rbh=
2GMbh

c2 =3x10−8
(

Mbh

1020 g
)cm

e.g. Carr'06, Khlopov'10



  

PBHs: formation

● PBHs were formed in the very early 
Universe.

● Large overdensity (δ~1) with a  horizon 
size

● In case of usual almost flat spectrum 
with gaussian fluctuations ε~10-5, the 
probability during RD is prohibitively low: 

W(k)∼exp (− δ
2

ϵ(k)
2)



  

PBHs: formation

● Two ways out:
● Non-flat spectrum of fluctuations 
ε(k) could produce PBH in 
abundance at some scale. E.g. 
spike in inflationary spectrum could 
lead to narrowly distributed masses 
of PBHs.

● EOS p=γe softening due to phase-
transition (for example). PBHs 
would be mostly formed at the 
epoch of that transition
  W∼exp(−

γ2

ϵ
2 )



  

PBHs: formation

● Alternatives:

● Bubble collisions during phase 
transition. PBHs again would have mass 
defined by the time of the transition 
(QCD—1 Msol, e

+e- annihilation – 105 Msol). 

● In general we are not expecting PBHs of 
much higher masses to be formed, 
because we more or less understand 
physics at these scales  and excessive 
PBH formation could affect BBN

●  Last but not least: collapse of cosmic 
strings, domain walls



  

PBHs: formation

● Concluding remarks:
● Considerable contribution of PBH 
into the Universe mass-energy 
budget comes from the fact that 
they are non-relativistic at any 
stage. Thus they are diluted only as 
a-3, whereas other species as a-4.

● In some extensions PBHs could 
leave Planck mass relics after 
evaporation. These relics (10-5 g) 
could also be considered as DM 
candidates.



  

PBHs: Hawking evaporation

● Black holes are not entirely black
● They slowly evaporate due to the 
Hawking radiation at very long 
timescales:

● Only PBHs with masses larger than 1015 
g survived until now

τ (M)∼
hc4

G2M3≈1064
(

M
Msol

)
3

yr



  

PBHs:  mass range

1015 g 1040 g

?



  

PBHs:  constraints from evaporation

● At the lower boundary PBH abundance is 
severely constrained by non-observation 
of gamma-rays  (and CRs) from PBHs 
evaporating at this very moment

● ΩPBH <10-9 at MPBH~1015, however these 
constraints get relaxed very rapidly

From Carr et al.'10



  

Constraints from femtolensing

●  Gravitational lensing (by PBH) cause 
emergence of two images

● Time delay τ between them would be ~rg/c

● If MPBH~1018 g τ would be around one period 
length for a  MeV gamma-ray==>we could 
expect some spectral features due to the 
constructive/destructive interference 
(Gould'92)

● As a rule of thumb, optical depth to lensing 
is ~Ω for cosmological distances



  

Constraints from femtolensing

●  Barnacka et al'12 used Fermi GBM data 
to constrain PBH abundance (from 500 
bursts)

●Possible problems – non-finite size of the 
sources (GRBs). That could invalidate these claims



  

Constraints from stellar evolution

● PBHs could be captured by a protostar
● Due  to the dynamic friction, they could 
fall down to the central regions of the star

● After some compact object (WD or NS) 
would form, PBH would rapidly devour it

● Thus, observation of these objects could 
put some constraints on PBHs abundance.

F.Capela, MP & P.Tinyakov, 2013a 
(1209.6021,PRD 87 id. 023507)



  

Constraints from stellar evolution

 

F.Capela, MP & P.Tinyakov 2013a

●Some fraction of DM would be gravitationally bound to a forming 
star. In case of the Maxwellian distribution this fraction could be 
estimated as:

●Star formation:  GMC is fragmenting into denser clumps

●MGMC= 5x105  Msol                                     MPC = 1 Msol

● RGMC=  20 pc RPC = 0.02 pc

● ρ
GMC

 = 500 см-3                                         ρ
PC

 = 106 см-3



  

Constraints from stellar evolution: AC

 
● Adiabatic contraction: DM is falling inside deepening 

potential well of the forming star

●                              

●  Radial orbits, L conserved. ==> rM(r)=const
 

●This process would operate even when the collapse time 
scale is comparable to the free fall time 

 
●However, there is no effective way for DM to lose its 

initial angular momentum, thus the final enhancement 
would be ~r-3/2  for initially uniform cloud

ρDM (r )=
1
2
ρDM , bound(

R0

r
)
3 /2

I=∮ pdq=const



  

Constraints from stellar evolution

● We need to look for regions with large abundance of slowly 
moving (small velocity dispersion) DM

● Old globular clusters of the galactic halo (?)
●  Simulations show that they were formed at z=10-12 in rare 

density peaks and the initial DM density could reach  10 000 
GeV/cm3

 



  

●  If NBH<1, no constraints arise

● If  NBH>1, then we could constrain 
PBH fraction

ΩPBH

ΩDM
≤

1
NBH

N BH=M DM (rc )/mBH

●  More massive PBHs would sink faster but their number is 
much lower (we have fixed density of PBHs)

Constraints from stellar evolution: constraints 



  

● When a massive body is moving through a medium some 
drag force would emerge. Some density enhancement would 
be formed behind a moving body due to the effect of 
gravitational focussing. Thus this body would experience  
action of an additional attractive force, i.e. dynamical friction

● Friction is more effective for  massive bodies
● We are interested in the fraction of PBHs that would have 

spiralled down to the radius of future NS/WD in the star 
lifetime

Constraints from stellar evolution: dynamic friction



  

Constraints from stellar evolution: constraints 



  

Constraints from stellar evolution: revisited

●  Previous estimates were based onto clear 
distinction: DM inside/outside  a star always 
remains inside/outside

● Clearly insufficient—most of the orbits are radial
● Enhancement factor is ~2x103 



  

Constraints from stellar evolution: revisited

●  Much more DM could be captured (depends on 
DM-nucleon interaction strength)

● Again, taking PBH: 

FC,MP&PT, 2014 
(1403.7098)



  

PBH capture by NSs

● Idea is quite similar – if a NS could  capture a PBH, then the 
latter one would rapidly sink down to the centre of a NS and 
after that quickly destroy it.

● NSs in GCs  are about 10 billion years old and we adopt high 
DM density ~103 GeV/cm3

●  Again we would employ the dynamic friction—if a PBH could 
lose enough energy to become bound (Etot<0), all the 
subsequent fly-throughs would quickly (~several million 
years) would bring a PBH to the center

● Direct accretion is not as effective as a drag force (~ 25% 
contribution)

F. Capela, MP &P. Tinyakov 2013b
(1301.4184,PRD 87 id. 123524)



  

● During every subsequent passage, the PBH would lose the 
same amount of energy and gradually its orbit would shrink

● Evolution time scale is comparable with the Universe age for 
PBHs with masses 3х1017 g

PBH capture by NSs



  

● Only PBHs with asymptotic energy less than  Eloss could be 
captured

● Rate would be determined by the distribution parameters

● Maxwellian:

PBH capture by NSs



  

●Coulomb logarithm value is crucial for the DF effect to play 
any role

ln Λ=ln
bmax

GN MBH

≈ln
M star

MBH

● Usual star:  ln Λ ~30

● When we are dealing with NS (degenerate matter) it's not so 
simple now—bmax<<Rstar . Impact parameter should be small 
enough in order to transfer more than Fermi momentum to 
the particles constituting NS

PBH capture by NSs



  

● We used Belvedere et al' 12 model but results proved to be  
rather robust and model-independent

● Taking into account drag due to the direct accretion we 
finally got that in the degenerate case the effect is weaker in  
k=4.5 times.

PBH capture by NSs



  

Constraints from microlensing

● For heavier PBHs more stringent constraints come from 
microlensing experiments (EROS, MACHO). e.g. Tisserand et 
al'07

● For masses 1026 g – 1033 g   PBHs are excluded as a main 
contribution to the DM density (f<0.1)

● In Cieplak&Griest'13, Griest et al.'13  this analysis was 
performed using Kepler data, thus lowering limit down to 1024 
g

from Griest et 
al.'13



  

Still heavier PBHs

● > tens solar masses are excluded in the wide range by wide 
binaries survival (Yoo et al'04)

● Also there are strong constraints from reionization history 
(absence of early reionization) and CMB spectrum (no 
significant spectral deviations) 'Ricotti et al'08

● For very heavy PBHs (>millions of solar masses)--no GRB-
echo (Nemiroff et al'93), no disk destruction 
(Lacey&Ostriker'85) and all that...

From Ricotti et al'08



  

Conclusions



  

THANK YOU!
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