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♢ A POINT MASS IN GENERAL RELATIVITY.

♠ Coalescence of binary black holes:

•G. Sch�afer, Post-Newtonian Methods: Analytic Results on the Binary Problem
in book: Mass and Motion in General Relativity, 167�210 (Springer, 2011);

• L. Blanchet, LRR, 17, 187 (2014);

• T. Damour, P. Jaranowski, G. Sch�afer, PLB. 513, 147 (2001);

• and others.

• Extremely necessary for describing LIGO's and Virgo's discovery!

• At an initial step the black holes are modeled by point-like particles presented
by Dirac's δ-function.

• Then consequent post-Newtonian approximations are used; excellent mathe-
matics, regularization, etc

• The interpretation problems.

• A point-like description as a fundamental problem.

• A necessity of an exact presentation.



♠ AN EXACT PRESENTATION.

• The Schwarzschild BH as a point particle described by the Dirac δ -function!

• REQUIREMENTS:

(i) The true singularity has to be described by the world line r = 0 with the use
of the Dirac δ(r)-function.

(ii) The Schwarzschild solution has to be presented in the asymptotically �at
form with appropriate (Newtonian) fall-o� of potentials at spatial in�nity.

(iii) To be consistent with a continuous spherically symmetric collapse trajectories
of falling test particles have to achieve the true singularity continuously.

• The point (i) cannot be satis�ed in the geometrical presentation of GR. The
same physical reality can be described in various mathematical techniques.
The �eld-theoretical methods in GR resolves the problems.

• OTHER REQUIREMENTS:

(iv) We require a so-called �η-causality� (property, when the physical light cone
is inside the background light cone) at all the points of the background
spacetime.

(v) We require a �nite time for a free test particle in the background spacetime
to achieve the true singularity.



♣ THE FIELD-THEORETICAL PRESENTATION OF GR.

Lagrangian of the gravity theory:

L = L(gµν, ϕA) = LG(gµν) + LM(gµν, ϕA) (1)

♠ ϕA � a set of tensor densities (matter �elds);

♠ γµν � Minkowski metric in curvelinear coordinates (background);

♠ L̄ = L(γµν) � Lagrangian of the background system.

Perturbations, hµν (the �elds con�guration - dynamic variables):
√
−ggµν =

√
−γ(γµν + hµν); (2)

Lagrangian for new, ĥµν =
√
−γhµν, φA, dynamic variables:

Ldyn = L (γ + h, ϕ)− ĥµν δL̄
δγ̂µν

− L̄ (3)

Variation with respect to ĥµν leas to the �eld equations:

GL
µν = κ(tgµν + tmµν) = κttotµν , (4)

The total energy-momentum tensor:

ttotµν ≡ 2√
ḡ

δLdyn

δγµν
, ∇̄νt

µν
tot = 0 . (5)



♢ The works in the �eld-theoretical formulation in GR:

• S.Deser, GRG, 1, 9 (1970);

• L.P. Grishchuk, A.N. Petrov and A.D. Popova, Commun. Math. Phys., 94,
379 (1984);

• L.P. Grishchuk and A.N. Petrov, ZhETF, 92, 9 (1987);

• A.D. Popova and A.N. Petrov, IJMPA, 3, 2651 (1988);

• A.N. Petrov, S.M. Kopeikin, R.R. Lompay and B. Tekin, �Metric Theories
of Gravity: Perturbations and Conservation Laws� (Germany: De Gruyter,
2017).



♣GAUGE TRANSFORMATIONS AND GAUGE INVARIANCE

The same solution to the Einstein equations can be written in another
coordinate chart, say, {x′α}. The corresponding decomposition is√

−g′g′µν(x′) ≡
√
−γ′ (γ′µν(x′) + h′µν(x′)) . (6)

Then, after the shifting in the frame {x′α} from points with values of the
coordinates x′α to points with values xα and after equalizing γ′µν(x) = γµν(x),
one gets √

−g′g′µν(x) ≡
√
−γ (γµν(x) + h′µν(x)) . (7)

The interpretation is as follows. They are related to the same solution to the
Einstein equations; for both of these decompositions the same background
presented by the metric γµν is chosen by di�erent ways. One concludes that the
�elds hµν and h′µν describe the same physical reality, only they and connected
by gauge transformations.



♢ Perturbations connected by gauge transformations.



♢Gauge transformations (symbolic description):

Full (�nite) gauge transformations for the dynamical variables:

h′µν = hµν +

∞∑
k=1

1

k!
£k

ξ (γ
µν + hµν) , ϕ′A = ϕA +

∞∑
k=1

1

k!
£k

ξϕ
A. (8)

Gauge transformations in linear gravity theory on a �at background (Lorenzian
coordonates):

hµν = gµν − ηµν, =⇒ h′µν = hµν −£ξη
µν, =⇒ h′µν = hµν + ∂µξν + ∂νξµ (9)

♢ Invariance with respect to gauge transformations:

• Lagrangain is gauge-invariant up to a divergence on the background equations.
• THE FIELD-THEORETICAL EQUATIONS ARE GAUGE-INVARIANT ON
THE BACKGROUND EQUATIONS AND ON THEMSELVES.

• The energy-momentum tensor is NOT gauge-invariant:

κt′totµν = κttotµν +GL
µν(δh)



♢ A point particle in the Newtonian gravity;

• φ = m/r � the Newtonian potential for a point mass:

• The Newtonian gravity equation:

∆φ = −4πρ(r⃗) =⇒ (10)

• ρ(r⃗) = mδ(r⃗) � the the mass density for a point mass.

♢ The Schwarzschild solution as a �eld con�guration in Minkowski space.

• The Schwarzschild solution:

ds2 = (1− rg/r) c
2dt2 − (1− rg/r)

−1 dr2 − r2
(
dθ2 + sin2 θdϕ2

)
(11)

• The Einstein equations:

Gµν = κTµν =⇒ Tµν = ??? (not satisfactory). (12)

• The �eld-theoretical form of the GR equations,

GL
µν = ttotµν . (13)

• The background Minkowski space:

ds2 = c2dt2 − dr2 − r2
(
dθ2 + sin2 θdϕ2

)
. (14)

• The �eld con�guration:

h00
s = − rg/r

1− rg/r
, h11

s =
rg
r
. (15)
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The energy density of the gravitational �eld and sources.

• The break in hµν
s and ttot00 corresponds to a break in geodesics:

THE REQUIREMENT (iii) IS NOT HOLD!

• The coordinate transformation, like cdt → cdt + f (r)dr applied to physical
metric gµν and a consequent choose of the same background as Minkowski
space

ds2 = c2dt2 − dr2 − r2
(
dθ2 + sin2 θdϕ2

)
(16)

changes the �eld con�guration � it is interpreted as the gauge transformation.

♠ It is necessary to �nd a more appropriate gauge �xing.



0
r
g r

t
00

tot

♠ The Eddington-Finkelstein gauge �xing:
ALL THE REQUIREMENT ARE SATISFIED!

• The Schwarzschild solution:

ds2 =
(
1− rg

r

)
c2dt2 − 2c

rg
r
drdt−

(
1 +

rg
r

)
dr2 − r2d2Ω. (17)

• in Minkowski space: ds̄2 = c2dt2 − dr2 − r2d2Ω.

• The �eld con�guration:

h00
e =

rg
r
, h01

e = −rg
r
, h11

e =
rg
r
. (18)

• Energy-momentum:

ttot00 = mc2δ(r) , ttot11 = −mc2δ(r) , ttotAB = −1
2ḡAB mc2δ(r) . (19)



♢ A generalization Of the Eddington-Finkelstein gauge �xing
for the Schwarzschild solution

♠ Coordinates transformations applied to the Eddington-Finkelstein frame:

cdt → cdt + f (rg/r)dr. (20)

♠ Construction of �eld con�gurations with the background:

ds2 = c2dt2 − dr2 − r2
(
dθ2 + sin2 θ.dϕ2

)
(21)

♠ Required properties of the related �eld con�gurations:

• the true singularity is placed at r = 0 by the δ-function ;

• the �eld variables (perturbations) are asymptotically �at;

• regularity at the horizon.



♠ A general gauge �xing

• The Schwarzschild solution:

ds2 =
(
1− rg

r

)
c2dt2 − 2

[rg
r
+
(
1− rg

r

)
f
]
cdtdr

−
[(

1 +
rg
r

)
− 2

rg
r
f −

(
1− rg

r

)
f 2
]
dr2 − r2dΩ2 . (22)

• The �eld con�guration:

h00
f =

rg
r
− 2

rg
r
f −

(
1− rg

r

)
f 2 ,

h01
f = −rg

r
−
(
1− rg

r

)
f ,

h11
f =

rg
r
. (23)

• The energy-momentum components:

ttot00 = mc2δ(r)− 4πrgδ(r)
[
2
(
f +

rg
r
f ′
)
+ 2ff ′ − f 2 − 2

rg
r
ff ′
]

+
[
4f ′2 +

(
f ′′ − f ′2) rg

r
− 4ff ′ + ff ′′

(
1− rg

r

)] r2g
r4

, (24)

ttot11 = −mc2δ(r) , (25)

ttotAB = −1
2γAB mc2δ(r); A, . . . = 2, 3 . (26)



♠ RESTRICTIONS FOR f = f (rg/r):

• The requirement (i) is ful�lled - the true singularity is modeled by δ-function.

• The requirement (ii) of the Newtonian asymptotic behaviour:

f (rg/r)|r→∞ ∼ (rg/r)
α; α > 1/2. (27)

• The requirement (iii) of the continuous geodesics at 0 < r ≤ ∞:

|f | < N ; smooth and monotonic for arbitrary large positive N (28)

♠ Additional restrictions for f = f (rg/r):

• The η-causality requirement (iv):

|f (rg/r)|r→∞ <
2rg
r
; |f |rg<r<∞ ≤ 2rg/r

1− rg/r
. (29)

• The requirement (v) of a �nite time of achieving the true singularity:

|f |r→0 < N. (30)
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♠ A particular gauge �xing f = −rg
r

• The Schwarzschild solution:

ds2 =
(
1− rg

r

)
c2dt2 − 2

r2g
r2

c dt dr −
(
1 +

rg
r

)(
1 +

r2g
r2

)
dr2 − r2

(
dθ2 + sin2 θdϕ2

)
.

• The �eld con�guration:

h00
f =

rg
r
+
r2g
r2

+
r3g
r3

, h01
f = −

r2g
r2

, h11
f =

rg
r
; (31)

• The energy-momentum components:

ttot00 = mc2δ(r) +mc2
rg
r

(
1 +

3

2

rg
r

)
δ(r)− mc2

4π

rg
r4

(
1 + 3

rg
r

)
,

ttot11 = −mc2δ(r) ,

ttotAB = −1
2γAB mc2δ(r) ; A, B = 2, 3. (32)



♢ CONTINUOUS COLLAPSE OF A DUST CLOUD

• J.R. Oppenheimer and H. Snyder, Phys. Rev., 56, 455 (1939) -

• The intrinsic and extrinsic solutions has to matched by the noncontradictive
way - it is a problem:

• Y. Kanai, M. Siino and A. Hosoya, Prog. Theor. Phys., 125, 1053 (2011).

• The extrinsic Painlev�e-Gullstrand coordinates:

ds2 =

(
1− 2m

r

)
c2dt2 − 2

√
2m

r
drcdt− dr2 − r2dΩ2 . (33)

• The generalized intrinsic Painlev�e-Gullstrand coordinates:

ds2 =

(
1− 4

9

r2

(ct)2

)
c2dt2 +

4

3

r

ct
drcdt− dr2 − r2dΩ2 . (34)

• Both of the solutions are matched smoothly automatically!

♠ Appilication of the �eld-theoretical tools is not sensible because
the requirement of the point (ii) is not hold.



r→∞∂Σ

ν = x0 = const r = x1 = const

Ðèñ. 1:Collapse of the dust cloud to a point.



♢ An appropriate change of the PG gauge �xing
for a collapsing matter solution

♠ Coordinates transformations from the PG-like frame to the EF-like frame:

cdt → cdt +
(rg/r)

1/2

1 + (rg/r)1/2
dr, (35)

♠ Coordinates transformations from the PG-like frame to a general frame:

cdt → cdt +

(
(rg/r)

1/2

1 + (rg/r)1/2
− f (rg/r)

)
dr = cdt + F (rg/r)dr. (36)

♠ Construction of �eld con�gurations with the background:

ds2 = c2dt2 − dr2 − r2
(
dθ2 + sin2 θ.dϕ2

)
(37)

♠ Required properties of the related �eld con�gurations:

• requirements (i)− (iii), (v) are satis�ed with the above requirements for f ;

• the requirement (iv) are satis�ed with the additional permissible restrictions
for F in the intrinsic region



♢ Announce of the monograph:

Petrov, Alexander N. / Kopeikin, Sergei M. / Lompay, Robert R. / Tekin, Bayram

METRIC THEORIES OF GRAVITY:
PERTURBATIONS AND CONSERVATION LAWS

Published April 2017
;

Publisher: De Gruyter


