МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М.В. ЛОМОНОСОВА

Государственный Астрономический институт им. П.К. Штернберга

На правах рукописи

УДК 524.386

ГОСТЕВ Николай Юрьевич

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТОВ ПОТЕМНЕНИЯ ДИСКА К КРАЮ У ЗВЁЗД, ЗАТМЕВАЕМЫХ ЭКЗОПЛАНЕТАМИ

Специальность 01.03.02 – астрофизика и звездная астрономия

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

MOCKBA - 2011

Работа выполнена на кафедре астрофизики и звездной астрономии физического факультета Московского государственного университета имени М.В.Ломоносова

Научный	руководитель:	

доктор физико-математических					
наук академик РАН	Черепащук Анатолий Михайлович (Государственный Астрономический Институт имени П.К. Штернберга				
	МГУ, Москва)				
Официальные оппоненты:					
доктор физико-математических					
наук, доцент	Машонкина Людмила Ивановна				
	(Институт астрономии				
	Российской академии наук, Москва)				
доктор физико-математических,					
наук, профессор	Ягола Анатолий Григорьевич				
	(Физический факультет МГУ,				
	Москва)				

Ведущая организация:

Казанский (Приволжский) федеральный университет

Защита состоится <u>в 14.00 16 февраля 2012 года</u> на заседании Диссертационного совета по астрономии Московского государственного университета им. М.В. Ломоносова, шифр Д.501.001.86

Адрес: 119992, Москва, Университетский пр. 13.

С диссертацией можно ознакомиться в библиотеке Государственного астрономического института им. П.К. Штернберга МГУ (Москва, Университетский пр, 13)

Автореферат разослан

Ученый секретарь Диссертационного совета доктор физ.-мат. наук

АЛЕКСЕЕВ С.О.

Общая характеристика работы

Актуальность темы

В последние годы, благодаря космическим миссиям (HST, CoRoT, Kepler) получены уникальные по точности кривые блеска затмения звезд экзопланетами (см. например [1]-[4]). В связи с запуском в марте 2009 года космического телескопа Kepler высокоточные наблюдательные данные покрытий звезд экзопланетами приобрели массовый характер [5]. Предполагаемый список объектов Kepler Input Catalog (KIC) составляет 50000 объектов [5]. Точность фотометрических данных достигает $10^{-4} - 10^{-5}$ относительной интенсивности. Столь огромный массив высокоточных данных позволяет ставить новые задачи, а прежние решать на качественно ином уровне.

Фотометрический материал полученный обсерваториями Kepler, Corot, HST, а именно транзитные кривые блеска уже позволили определить радиусы звезд и экзопланет для около двухсот двойных систем (см. например каталог Interactive Extra-solar Planets Catalog [6]). Анализ кривой блеска HD 209458, полученной на HST в 2000 году, выполнен в работе Брауна и др. [1]. Анализ многоцветных кривых блеска HD 209458, полученных на HST в 2003 году выполнен в работе Кнутсона и др. [2]. В обеих работах были получены радиусы экзопланеты и звезды, наклонение орбиты и коэффициенты потемнения к краю для звезды. Наиболее детальное исследование данных рядов наблюдений с HST выполнил Соузворз [7]. Автор [7] получил значения радиусов экзопланеты и звезды, наклонение орбиты, а также значения коэффициентов потемнения к краю для звезды в различных законах потемнения.

Однако, часто анализ транзитной кривой блеска проводится при фиксированных коэффициентах потемнения к краю затмевающейся звезды. В то же время, двойная система с экзопланетой в этом отношении является практически идеальным лабораторным стендом позволяющим детально исследовать потемнение к краю и поверхностную структуру звезды. Вплоть до того, что можно восстановить распределение пятен на поверхности звезды [8]. Кроме того, часто оказывается, что результаты, полученные из анализа кривых блеска для различных эпох наблюдений, а также значения геометрических параметров для разных длин волн не вполне согласуются между собой в пределах своих ошибок. Следовательно, возникает необходимость более подробно рассмотреть вопрос о надёжности используемых методов интерпретации наблюдательных данных и получаемых с помощью них значений искомых параметров.

В данной работе проводится статистический анализ транзитных кривых блеска двойных звездных систем с целью получения коэффициентов потемнения диска звезды к краю. В работах [9]-[11] проведен анализ наблюдательных данных указанных двойных систем, однако авторы выполнили интерпретацию кривых блеска при фиксированных коэффициентах потемнения к краю. В данной работе помимо определения геометрических параметров двойной системы исследован вопрос потемнения диска звезды к краю в предположении линейного и квадратичного закона потемнения.

При этом анализ наблюдательных данных проведен как на основе стандартного метода дифференциальных поправок, так и на основе метода доверительных областей, который позволяет проверить адекватность модели и указать на основе конкретной реализации наблюдательных данных консервативные ошибки искомых параметров, а также позволяет судить о надёжности интерпретации наблюдательных данных в рамках используемой модели [12].

Математическая формулировка задачи и метод ее решения

Данная задача относится к классу конечно-параметрических обратных задач в статистической постановке. Рассмотрим модель, задаваемую произвольной, в общем случае нелинейной функцией $f(\theta, \beta_1 \dots \beta_P)$, определенной для $\theta \in \{\theta_1 \dots \theta_M\}$ и для векторов $(\beta_1 \dots \beta_P)^T \in \mathcal{B}$, где \mathcal{B} – некоторая область действительного евклидового пространства. При этом мы предполагаем $f(\theta, \beta_1 \dots \beta_P)$ дифференцируемой по $\beta_1 \dots \beta_P$ во всей области определения.

При этом полагаются заданными параметры $\overline{\beta}_1 \dots \overline{\beta}_P$, $w_1 \dots w_M$, нормально распределенные случайные величины $\xi_1 \dots \xi_M$, дисперсия единицы веса ε_0 и функционал невязки. Случайные величины $\xi_1 \dots \xi_M$ имеют нормальное распределение и

$$\begin{aligned}
\mathbf{M}(\xi_k) &= f(\theta_k, \overline{\beta}_1 \dots \overline{\beta}_P), \\
\sigma^2(\xi_1 w_1) &= \sigma^2(\xi_2 w_2) = \dots = \sigma^2(\xi_M w_M) = \varepsilon_0^2,
\end{aligned} \tag{1}$$

где $M(\xi_k)$ означает математическое ожидание величины ξ_k , а $\sigma^2(\cdot)$ – операцию нахождения дисперсии.

Также предположим, что матрица

$$A_{qp}(\beta_1\dots\beta_P) = \sum_{m=1}^M \frac{\partial f}{\partial \beta_q}(\theta_m, \beta_1\dots\beta_P) \frac{\partial f}{\partial \beta_p}(\theta_m, \beta_1\dots\beta_P) w_m$$
(2)

является невырожденной при $(\beta_1 \dots \beta_P)^T \in \mathcal{B}$. При этом мы будем обозначать элементы матрицы, обратной матрице (2), как $A_{qp}^{inv}(\beta_1 \dots \beta_P)$.

Функционал невязки задается следующим образом:

$$R(\beta_1 \dots \beta_P, \xi_1 \dots \xi_M) = \sum_{m=1}^M \left(\xi_m - f(\theta, \beta_1 \dots \beta_P)\right)^2 w_m, \qquad (3)$$

и предполагается, что при фиксированных $\xi_1 \dots \xi_M$ он является выпуклым по переменным $\beta_1 \dots \beta_P$ и достигает по ним минимума в области \mathcal{B} .

Метод дифференциальных поправок заключается в том, что функция f заменяется ее разложением в ряд Тейлора до линейного члена в точке минимума функционала невязки, и в качестве оценки дисперсий минимальных значений $\beta_1 \dots \beta_P$ берутся дисперсии, найденные в рамках метода наименьших квадратов для соответствующей линейной модели.

Обозначим как $\beta_1^c(\xi) \dots \beta_P^c(\xi)$ значения параметров (которые назовем центральными), доставляющие минимум функционалу невязки $R(\beta_1 \dots \beta_P, \xi_1 \dots \xi_M)$ при фиксированных $\xi_1 \dots \xi_M$. Величины:

$$\operatorname{cov}_o(\beta_q^c(\xi), \beta_p^c(\xi)) \equiv \varepsilon_0^2 A_{qp}^{\operatorname{inv}}(\beta_1^c(\xi) \dots \beta_P^c(\xi))$$

И

$$\sigma_o^2(\beta_p^c(\xi)) \equiv \varepsilon_0^2 A_{pp}^{\text{inv}}(\beta_1^c(\xi) \dots \beta_P^c(\xi))$$

полученные по формулам для ковариаций и дисперсий центральных значений в линейной модели, берутся в качестве приближенной оценки ковариаций и дисперсий $\beta_1^c(\xi) \dots \beta_P^c(\xi)$. В случае реально наблюдаемой кривой блеска, когда неизвестно значение дисперсии единицы веса, аналогично линейному случаю вместо значения ε_0 используется среднеквадратичная оценка дисперсии единицы веса

$$v_0^2(\xi) = \frac{R(\beta_1^c(\xi)\dots\beta_P^c(\xi),\xi_1\dots\xi_M)}{M-P}$$

и соответствующие приближенные среднеквадратичные оценки дисперсий параметров

$$\sigma_{est}^2(\beta_p^c(\xi)) \equiv v_0^2(\xi) A_{pp}^{\text{inv}}(\beta_1^c(\xi) \dots \beta_P^c(\xi)) \,.$$

Использование в расчетах такого приближения предполагает, что можно пренебречь изменением производных функции f в (2), вычисленных с центральными значениями параметров, при изменении ξ в окрестности их математических ожиданий. Зная дисперсию центрального значения параметра, можно построить интервал, в который с заданной вероятностью попадает истинное значение параметра. Для этого достаточно заметить, что исходя из нормального закона распределения центрального значения параметра следует, что

$$\mathbf{P}\left(\left|\alpha_p^c(\xi) - \bar{\alpha_p}\right| \le \kappa(\gamma) \,\sigma(\alpha_p^c(\xi))\right) = \gamma \,, \tag{4}$$

где символ **Р** означает вероятность выполнения условия, а κ зависит от выбранной вероятности попадания (уровня доверия) γ и находится как корень уравнения:

$$\sqrt{\frac{2}{\pi}} \int_{0}^{\kappa} \exp\left(-\frac{t^2}{2}\right) dt = \gamma \,.$$

Например, при κ равном 1, 2 и 3 уровень доверия γ равен 0.6827, 0.9545 и 0.9973 соответственно (правило одной, двух и трех σ).

В случае реально наблюдаемой кривой блеска, когда неизвестно значение дисперсии единицы веса, вместо значения ε_0 используется среднеквадратичная оценка дисперсии единицы веса

$$v_0^2(\xi) = \frac{R(\beta_1^c(\xi) \dots \beta_P^c(\xi), \xi_1 \dots \xi_M)}{M - P}$$
(5)

и соответствующие приближенные среднеквадратичные оценки дисперсий параметров

$$\sigma_{est}^2(\beta_p^c(\xi)) \equiv v_0^2(\xi) A_{pp}^{\text{inv}}(\beta_1^c(\xi) \dots \beta_P^c(\xi)) .$$
(6)

При этом v_0 является случайной величиной, и величина $(\alpha_p^c(\xi) - \bar{\alpha}_p)/\sigma_{est}(\alpha_p^c(\xi))$ имеет распределение Стъюдента с M - P степенями свободы. Однако при достаточно больших $M - P \gg 10$ оно уже достаточно близко к нормальному, и можно считать, что вероятность $\mathbf{P}\left(\left|\alpha_p^c(\xi) - \bar{\alpha_p}\right| \le \kappa \sigma(\alpha_p^c(\xi))\right) \simeq \mathbf{P}\left(\left|\alpha_p^c(\xi) - \bar{\alpha_p}\right| \le \kappa \sigma_{est}(\alpha_p^c(\xi))\right)$, то есть

можно считать, что вероятность попадания истинного значения в интервал, построенный с помощью умножения среднеквадратичной оценки дисперсии на соответствующий коэффициент $\kappa(\gamma)$ будет достаточно близка к γ

В методе Монте-Карло оценка дисперсии $\sigma(\beta_1^c) \dots \sigma(\beta_1^c)$ проводится следующим образом. При заданных $\overline{\beta}_1 \dots \overline{\beta}_P$ вычисляеются в фазах $\theta_1 \dots \theta_M$ значения кривой $\bar{\xi}_1 \dots \bar{\xi}_M$. Далее с заданной величиной ε_0 случайным образом генерируется \mathcal{N} раз последовательность нормально распределенных $\xi_1^{(n)} \dots \xi_M^{(n)}, n = 1 \dots \mathcal{N}$ с математическими ожиданиями равными $\bar{\xi}_1 \dots \bar{\xi}_M$. Для каждой последовательности $\xi_1^{(n)} \dots \xi_M^{(n)}, n = 1 \dots \mathcal{N}$ находятся

центральные значения $\beta_1^{c(n)}\dots\beta_P^{c(n)}$ и их дисперсии оцениваются как

$$\sigma_{mc}^2(\beta_p^c) = \frac{1}{N} \sum_{n=1}^{N} (\beta_p^{c(n)} - \overline{\beta}_p)^2.$$

Естественно, такой метод подразумевает, что истинные значения $\overline{\beta}_1 \dots \overline{\beta}_P$ известны, что возможно в модельных задачах, целью которых является нахождение ошибок для сравнения с ошибками, найденными другими способами. В случае же обработки реальной кривой блеска данный метод можно применить используя вместо истинных значений параметров $\overline{\beta}_1 \dots \overline{\beta}_P$ их центральные значения, полученные решением кривой блеска методом MHK. При этом делается предположение о том, что малое изменение $\overline{\beta}_1 \dots \overline{\beta}_P$ вызовет относительно малое изменение ошибки. В описанных методах делается предположение о том, что используемая модель идеально верна, а для оценки ошибок параметров используются статистика нормального распределения.

Метод доверительных областей основан на использовании в качестве статистики невязки R, задаваемой (3). По теореме о χ^2 -распределении

$$\frac{R(\bar{\beta}_1 \dots \bar{\beta}_P, \xi_1 \dots \xi_M)}{\varepsilon_0^2} \sim \chi_M^2.$$
(7)

где " \sim " означает "распределено как". Функция распределения χ^2_M :

$$\chi_m^2(t) = \frac{\Gamma(\frac{m}{2}, 0, \frac{t}{2})}{\Gamma(\frac{m}{2})},$$
(8)

где $\Gamma(\frac{m}{2}, 0, \frac{t}{2})$ – неполная обобщённая гамма функция. Следовательно, если $\chi^2_M(\Delta_0) = \gamma$, то есть Δ_0 – квантиль χ^2_M -распределения для некоторого уровня доверия $\gamma < 1$, то соответствующая вероятность

$$\mathbf{P}\left(\frac{R(\bar{\beta}_1\dots\bar{\beta}_P,\xi_1\dots\xi_M)}{\varepsilon_0^2} \le \Delta_0\right) = \gamma.$$
(9)

Пусть D_P – P-мерное множество значений вектора $\beta_1 \dots \beta_P$, удовлетворяющих условию

$$\frac{R(\beta_1 \dots \beta_P, \xi_1 \dots \xi_M)}{\varepsilon_0^2} \le \Delta_0 \tag{9'}$$

Тогда (9) эквивалентно утверждению: с вероятностью γ множество D_P не пусто и истинные значения $(\bar{\beta}_1 \dots \bar{\beta}_P) \in D$. Множество D является доверительной областью для $(\bar{\beta}_1 \dots \bar{\beta}_P)$. Отметим, что в данном случае нельзя использовать вместо ε_0 его среднеквадратичную оценку v_0 , задаваемую (5), поскольку такая замена существенно нарушила бы закон распределения (7). В частности, пустой доверительной области не получалось бы при квантиле $\Delta_0 > M - P$ (при M = 101 это соответствует тому, что $\gamma > 0.35$), то есть модель всегда была бы адекватна наблюдениям. Поэтому следует брать либо точное значение ε_0 , известное в модельных задачах, либо его значение, полученное с большой точностью из независимых соображений в случае реальных наблюдений.

Рассмотрим теперь в качестве статистики разность между невязкой в статистике χ^2_M , полученной при истинных значениях параметров и этой же невязкой, полученной при центральных значениях параметров. В случае, когда зависимость от всех параметров линейная:

$$\frac{R(\bar{\beta}_1 \dots \bar{\beta}_P, \xi_1 \dots \xi_M) - R_{min}}{\varepsilon_0^2} \sim \chi_P^2.$$
(10)

Использование статистики (10) предполагает априорную адекватность модели и доверительное множество, полученное с помощью статистики (10) никогда не пусто.

Если же зависимость от $\beta_1 \dots \beta_K$ не является линейной, то утверждение (10) выполняются в асимптотическом смысле, когда число измерений стремится к бесконечности, и одной из задач данной работы является численная проверка допустимости таких асимптотических приближений.

В данной работе используется модель двух сферических звезд с тонкими атмосферами на круговой орбите без эффектов взаимной близости компонент. Такая модель легко реализуется на современных компьютерах и дает возможность выполнить большое число вариантов решения обратной

Рис 1: Модель двух затменных сферических звезд. Проекция на картинную плоскость. Здесь меньшая компонента – звезда или экзопланета.

задачи за сравнительно малое компьютерное время. Модель сферических звезд для двойной системы физически обоснована для тех случаев, когда степень заполнения полости Роша мала $\mu < 0.5$. В рассматриваемой модели рассматривалось движение дисков звезд в проекции на картинную плоскость, то есть плоскость перпендикулярную лучу зрения. На рис.1 показана геометрия дисков звезд во время затмения. Здесь r_1, r_2 – радиусы первой и второй звезды (радиус звезды и радиус планеты), Δ – расстояние между центрами дисков звезд, ρ , Ψ - полярные координаты произвольной точки поверхности диска первой звезды (начало координат расположено в геометрическом центре диска). Расстояние между центрами дисков звезд задается выражением

$$\Delta^2 = \cos^2 i + \sin^2 i \sin^2 \theta, \tag{11}$$

(см. например работу [13]), в котором i – наклонение орбиты двойной системы, θ – значение текущего орбитального фазового угла.

В качестве функций распределения яркости по диску каждой звезды использовался линейный закон потемнения к краю диска:

$$I(\rho) = I_0 \left(1 - x + x \sqrt{1 - \frac{\rho^2}{r^2}} \right),$$
 (12)

и квадратичный закон потемнения к краю диска, отличающийся от линейного дополнительным слагаемым, содержащим квадратичный коэффициент потемнения к краю *y*:

$$I(\rho) = I_0 \left(1 - x \left(1 - \sqrt{1 - \frac{\rho^2}{r^2}} \right) - y \left(1 - \sqrt{1 - \frac{\rho^2}{r^2}} \right)^2 \right) , \qquad (13)$$

Здесь ρ – полярное расстояние от центра диска звезды, r – радиус диска звезды, x и y – линейный и квадратичный коэффициенты потемнения к краю соответственно. Обозначим $I_0^{(1)}$, $I_0^{(2)}$ – яркости в центрах дисков первой и второй звезды, x_1 , x_2 – коэффициенты потемнения к краю первой и второй звезды, y_1 , y_2 – квадратичные коэффициенты потемнения к краю первой и второй звезды. Искомыми параметрами модели двух звезд являются: r_1 , r_2 , i, $I_0^{(1)}$, $I_0^{(2)}$, x_1 , x_2 , а в случае нелинейного закона потемнения к краю - так же и y_1 , y_2 . "Третий свет" в модели отсутствует. В случае модели звезды с экзопланетой для экзопланеты (второй компоненты) яркость и коэффициенты потемнения к краю полагаются равными нулю.

Кривая блеска двойной системы в данной модели определяется следующими тремя уравнениями:

1. Суммарная светимость компонент, описывающая внезатменный блеск:

$$2\pi \int_{0}^{r_1} I^{(1)}(\rho)\rho d\rho + 2\pi \int_{0}^{r_2} I^{(2)}(\xi)\xi d\xi = L^{full}.$$
 (14)

2. Потеря блеска системы, обусловленная затмением звездой большего радиуса спутника с меньшим радиусом

$$L^{full} - L^{(1)}(\theta) = \iint_{S(\Delta)} I^{(2)}(\xi) dS,$$
(15)

где $S(\Delta)$ – площадь области перекрытия дисков.

3. Потеря блеска, обусловленная затмением звездой меньшего радиуса спутника с большим радиусом:

$$L^{full} - L^{(2)}(\theta) = \iint_{S(\Delta)} I^{(1)}(\rho) dS.$$
 (16)

Уравнения (11), (14), (15) и (16) полностью описывают наблюдаемую кривую блеска и содержат, в зависимости от рассматриваемой модели, набор параметров из числа: r_1 , r_2 , i, $I_0^{(1)}$, $I_0^{(2)}$, x_1 , x_2 , y_1 , y_2 . Подставляя под знаки интегрирования функции распределения яркости, аппроксимированные соответствующим законом потемнения к краю (12) или (13) и выполняя интегрирование, получаем систему нелинейных алгебраических уравнений относительно соответствующих параметров.

Цель диссертации

1. Построить максимально простой и эффективный алгоритм вычисления кривой блеска в модели классической двойной системы.

2. Проверить возможность использования различных методов оценки ошибок параметров при интерпретации кривой блеска в модели классической двойной системы.

3. Исследовать на качественном и количественном уровне соотношение между интервалами ошибок, получающихся различными методами.

4. Интерпретировать кривые блеска систем с экзопланетами HD 209458, Kepler-5b, Kepler-6b, Kepler-7b, HD 189733 различными методами в линейном и квадратичном законе потемнения к краю.

5. Сравнить полученные значения параметров со значениями, полученными другими авторами. Исследовать зависимость полученных значений коэффициентов потемнения к краю от длины волны и сравнить со значениями, полученными из теории тонких атмосфер. Для системы HD 189733 исследовать зависимость отношения радиуса планеты к радиусу звезды от длины волны.

Практическая и научная ценность

Прежде всего представляет интерес комплексный подход к оценке ошибок параметров двойных звёздных систем путём интерпретации кривой

блеска различными методами. Такой подход даёт возможность не только получить значения ошибок параметров, но и оценить адекватность модели наблюдательным данным, а также даёт возможность объяснить имеющие место расхождения между результатами, полученными для различных эпох наблюдений и между значениями геометрических параметров системы, полученными для различных длин волн.

Также предоставляет интерес полностью аналитический подход к расчёту кривой блеска, заданной с помощью универсального выражения через функции, для которых есть эффективные методы вычисления. Такой подход значительно облегчает практическую реализацию алгоритма вычисления кривой блеска и позволяет сделать работу этого алгоритма максимально быстрой. Полностью аналитический метод расчёта теоретической кривой блеска особенно важен при вычислении значений кривых затмения экзопланетами, поскольку в данном случае радиус затмеваемой планеты весьма мал, ≤ 0.1 радиуса звезды. Значительный интерес представляют значения эмпирических коэффициентов потемнения к краю для пяти звёзд, восстановленные из анализа кривых блеска при затмении звезды экзопланетой. Представляет также интерес выявленное наличие атмосферы у экзопланеты по зависимости радиуса экзопланеты от длины волны.

Основные положения диссертации выносимые на защиту

1. Эффективный алгоритм расчёта кривой блеска классической двойной звёздной системы в модели с линейным и квадратичным законом потемнения к краю. Получено аналитическое выражение для падения блеска классической двойной звёздной системы при затмении, универсальное для всех значений искомых параметров.

2. Исследование соотношения между интервалами ошибок, полученными разными методами. В приближении линейной модели получено аналитическое выражение для функции плотности распределения интервалов ошибок, полученных в рамках статистики, распределённой по закону χ^2_M , где M – число точек наблюдений.

3. Результаты интерпретации классической затменной двойной звёздной системы YZ Cas. Получены надёжные значения радиусов звёзд, наклонения орбиты, и коэффициентов потемнения к краю.

4. Результаты интерпретации многоцветной кривой блеска затменной

двойной звёздной системы с экзопланетой HD209458. Получены надёжные значения радиуса звезды, радиуса экзопланеты, наклонения орбиты. Получена эмпирическая зависимость коэффициента потемнения к краю от длины волны в линейном и квадратичном законе потемнения диска звезды к краю (табл. 1, рис. 3). Показано, что имеется значимое расхождение между наблюдаемой зависимостью коэффициента потемнения к краю от длины волны и теоретической. Новым результатом является то, что значимое расхождение между теорией и наблюдениями остаётся даже при использовании метода доверительных областей, когда получаются наиболее консервативные оценки ошибок параметров модели.

5.Результаты интерпретации транзитных кривых блеска двойных звёздных систем с экзопланетами Kepler-5b, Kepler-6b, Kepler-7b (см. табл. 1). Получены надёжные значения радиуса звезды, радиуса экзопланеты, наклонения орбиты и значения коэффициентов потемнения к краю в линейном и квадратичном законе потемнения диска звезды к краю.

6.Результаты интерпретации многоцветной кривой блеска затменной двойной звёздной системы с экзопланетой HD189733. Получены надёжные значения радиуса звезды, радиуса экзопланеты, наклонения орбиты. Получена эмпирическая зависимость коэффициента потемнения к краю от длины волны в линейном и квадратичном законе потемнения диска звезды к краю (рис. 4). Обнаружено значимое расхождение между наблюдаемой зависимостью коэффициента потемнения к краю от длины волны и теоретической. Подтверждено увеличение наблюдаемого значения радиуса экзопланеты с уменьшением длины волны, что возможно свидетельствует о наличии атмосферы у экзопланеты, рассеивающей свет по релеевскому закону (рис. 5).

Основные результаты диссертации опубликованы в следующих работах:

1. М.К. Абубекеров, Н.Ю. Гостев, А.М. Черепащук "Оценка ошибок параметров в обратных параметрических задачах. Анализ кривых блеска классических затменных систем": Астрон. журн. 85, 121 - 150 (2008).

2. М.К. Абубекеров, Н.Ю. Гостев, А.М. Черепащук "Оценка ошибок параметров в обратных параметрических задачах. Поиск потемнения к краю звёзд в классических затменных системах": Астрон. журн. 86, 778 - 806 (2009).

3. М.К. Абубекеров, Н.Ю. Гостев, А.М. Черепащук "Анализ кривых блеска затменных систем с экзопланетами. Система HD 209458" Астрон. журн. 87, 1199 - 1220 (2010).

4. Н.Ю. Гостев "Анализ кривых блеска затменных систем с экзопланетами. Системы Kepler-5b, Kepler-6b, Kepler-7b". Астрон. журн. 88, 704 - 715 (2011).

5. М.К. Абубекеров, Н.Ю. Гостев, А.М. Черепащук "Анализ кривых блеска затменных систем с экзопланетами. Система HD 189733" Астрон. журн. 88, 1139 - 1163 (2011).

Результаты диссертации были доложены на следующих конференциях:

Всероссийская астрономическая конференция (ВАК-2010) "От эпохи Галилея до наших дней" (Казань, САО РАН 2010);

Международной научной конференции студентов, аспирантов и молодых учёных "Ломоносов-2010" (Москва, МГУ 2010);

Международная астрофизическая конференция "Новейшие методы исследования космических объектов" (Казань, КГУ 2010);

VII Конференция молодых учёных "Фундаментальные и прикладные космические исследования" (Москва, ИКИ РАН 2010);

Международная научная конференция студентов, аспирантов и молодых учёных "Ломоносов-2011" (Москва, МГУ 2011);

VIII Конференция молодых учёных "Фундаментальные и прикладные космические исследования" (Москва, ИКИ РАН, 2011);

Third IAU Symposium on searching for life signatures (Санкт-Петербург, ИПА РАН, 2011) Institute of Applied Astronomy RAS.

Всероссийская конференция Астрофизика высоких энергий сегодня и завтра (Москва, ИКИ РАН, 2011)

На Семинаре отдела звездной астрофизики (Москва, ГАИШ 2011);

Содержание диссертации

В первой главе описывается модель классической двойной системы и излагается эффективный алгоритм вычисления модельной кривой блеска, путём универсального для всех значений параметров выражения через эллиптические интегралы и кусочно заданные функции одной переменной. Рассматриваются линейный и квадратичный законы потемнения к краю.

Во второй главе излагаются применяемые в работе методы оценки ошибок, такие как метод дифференциальных поправок, метод доверительных областей, основанный на использовании статистик с законами распределения χ^2 и Фишера, метод Монте-Карло. Данные методы апробируются на примере кривой блеска YZ Cas и близких к ней модельных систем. Также исследуется количественное и качественное различие между различными методами оценки ошибок, в том числе между методами, в которых адекватность модели наблюдательным данным предполагается априори и теми, в которых адекватность модели наблюдательным данным проверяется одновременно с получением интервалов ошибок.

В третьей главе проводится интерпретация многоцветной кривой блеска системы HD 209458. Различными методами вычисляются параметры системы в линейном и квадратичном законах потемнения к краю. В рамках различных методов оценки ошибок анализируется согласованность значений геометрических параметров, полученных для различных длин волн. Анализируется надёжность модели в линейном и в квадратичном законе потемнения к краю. Проводится анализ зависимости коэффициентов потемнения к краю от длины волны, при этом сравниваются вычисленные значения коэффициентов потемнения к краю и полученные из теории тонких атмосфер. При этом обнаружено расхождение между теоретическими и найденными значениями коэффициентов потемнения к краю, которое увеличивается с ростом длины волны. Новым результатом является вывод о том, что это расхождение сохраняется даже при использовании наиболее консервативных методов оценок ошибок параметров модели, в рамках статистики с законом распределения χ_M^2 , где M – число точек наблюдения.

В четвертой главе описана интерпретация кривых блеска систем Kepler-5b, Kepler-6b, Kepler-7b различными методами для линейного и квадратичного законов потемнения к краю. Анализируется надёжность модели. Полученные значения коэффициентов потемнения к краю сравниваются с теоретически предсказанными значениями. Для звёзд в системах Kepler-5b, Kepler-7b эмпирическое значение линейного коэффициента потемнения диска звезды к краю x получается меньше теоретического значения x из таблиц коэффициентов в работе Кларе [14]. Для звезды системы Kepler-6b эмпирический коэффициент потемнения к краю x весьма близок к теоретическому значению из таблиц Кларе [14]. В случае предположения квадратичного закона потемнения к краю, значения коэффициентов потемнения к краю, значения

полученные при интерпретации наблюдаемых кривых блеска как методом дифференциальных поправок, так и методом доверительных областей с использованием статистики с законом распределения χ_P^2 , где P – число искомых параметров, а в случае звезды Kepler-5b также и с использованием статистики, распределенной по закону χ_M^2 , на выбранном уровне доверия $\gamma = 0.95$ в пределах интервала ошибок согласуются с теоретическими значениями из таблиц Кларе [14].

В пятой главе проводится интерпретация многоцветной кривой блеска системы HD 189733. Различными методами вычисляются параметры системы в линейном и квадратичном законах потемнения к краю. В рамках различных методов оценки ошибок анализируется согласованность значений геометрических параметров, полученных для различных длин волн. Анализируется зависимость отношения радиуса планеты к радиусу звезды от длины волны. Отмечено увеличение радиуса планеты с уменьшением длины волны, которое может объясняться релееевским рассеянием света и свидетельствовать о наличии у планеты атмосферы. Также проводится анализ зависимости коэффициентов потемнения к краю от длины волны, при этом сравниваются вычисленные значения коэффициентов потемнения к краю и полученные из теории тонких атмосфер. При этом в линейном законе потемнения к краю обнаружено расхождение между теоретическими и найденными значениями коэффициентов потемнения к краю, которое, в отличие от случая с системой HD 209458, уменьшается с ростом длины волны. В квадратичном законе потемнения к краю удаётся согласовать теоретические и найденные значения коэффициентов потемнения на уровне доверия $\gamma = 0.95$.

Основные результаты диссертации

1. Развит эффективный, полностью аналитический алгоритм расчёта кривой блеска классической двойной звёздной системы, в том числе, и для затмения звезды экзопланетой.

2. Получено качественное и количественное соотношение между интервалами ошибок, найденных в рамках различных методов.

3. Даны надёжные оценки коэффициентов потемнения к краю и геометрических параметров систем HD 209458, Kepler-5b, Kepler-6b, Kepler-7b, HD 189733.

4. Выявлено значимое различие между наблюдаемой зависимостью коэффициентов потемнения к краю в системах HD 209458 и HD 189733 и зависимостью, полученной из теории тонких звёздных атмосфер.

5. Подтверждена выявленная в работе [15] при фиксированном коэффициенте потемнения к краю зависимость радиуса экзопланеты в системе HD 189733 от длины волны λ , свидетельствующая о наличии у этой экзопланеты атмосферы.

Личный вклад автора

В статьях (1), (2), (3) для кривой блеска автором получены аналитические выражения через эллиптические интегралы и кусочно-заданные функции одной переменной, дающие

непосредственный алгоритм для решения прямой задачи, осуществлена программная реализация алгоритма для решения прямой и обратной задачи. В работе (1) автором произведена апробация алгоритма решения обратной параметрической задачи в модели двойных звёздных систем. В работах (2), (3), (5) автором вычислены параметры двойных звёздных систем и произведены дополнительные расчёты, потребовавшиеся в ходе работы над ними. В работе (2) автором получено качественное и количественное соотношение между интервалами ошибок, полученными различными методами (с помощью различных статистик). В работах (3), (4), (5) автор участвовал в постановке задачи, решении обратной задачи и статистической оценке ошибок параметров.

Полученные в работе коэффициенты потемнения к краю для пяти звёзд, а также отношение радиуса планеты к радиусу звезды в системе HD 189733 для линейного закона потемнения к краю

Отметим ещё раз наиболее важные с физической точки зрения результаты. Так, на рис. 3 и 4 представлены зависимости коэффициента потемнения к краю от длины волны в линейном законе потемнения для систем HD 209458 и HD 189733 соответственно. Видно, что расхождение между наблюдаемыми значениями коэффициента потемнения к краю и полученными из теории тонких атмосфер значительно. Для обоих систем наблюдаемые значения коэффициента потемнения к краю систематически меньше теоретических. При этом в случае с системой HD 209458 расхождение наблюдаемых и теоретических значений коэффициента потемнения к краю возрастает с ростом длины волны, в то время как в случае системы HD 189733 это расхождение максимально для наименьших длин волн. В случае квадратичного закона потемнения к краю данное расхождение уменьшается.

В таблице 1 приведены теоретические и наблюдаемые коэффициенты потемнения к краю для видимого диапазона длин волн, полученные в линейном и квадратичном законе для всех пяти рассмотренных в диссертационном исследовании систем. В последнем столбце приведены центральные длины волн, соответствующие наблюдаемым кривым блеска. Следует отметить, что большинство из приведённых линейных коэффициентов потемнения к краю меньше соответствующих теоретических коэффициентов. Это различие сохраняется при переходе от линейного к квадратичному закону потемнения диска звезды к краю. Объяснение указанного различия представляет собой отдельную физическую задачу.

Важным результатом является подтверждение увеличения радиуса экзопланеты с уменьшением длины волны (см. рис 5). Данная зависимость свидетельствует о релеевском рассеянии излучения звезды в атмосфере экзопланеты.

Таблица 1: Эмпирические и теоретические значения коэффициентов потемнения к краю. Опибки получены в рамках метода дифференциальных поправок. Опибка приведена на уровне 2σ . Для системы HD 189733 приведены результаты интерпретации по левой ветви кривой блеска. x – коэффициент для модели с линейным законом потемнения к краю. x_1 и y_1 – соответственно линейный и квадратичный коэффициенты в квадратичном законе потемнения к краю. Индексом "teor" обозначены соответствующие теоретические коэффициенты потемнения к краю.

Название системы	x	x_{teor}	x_1	x_{1teor}	$ y_1$	y_{1teor}	$\lambda(A)$
HD 209458	0.437 ± 0.013	~ 0.58	0.307 ± 0.075	~ 0.49	0.21 ± 0.12	~ 0.21	6779
Kepler-5b	0.482 ± 0.032	0.587	-0.07 ± 0.36	0.279	0.75 ± 0.52	0.363	6550
Kepler-6b	0.635 ± 0.026	0.632	0.38 ± 0.24	0.366	0.38 ± 0.38	0.314	6550
Kepler-7b	0.538 ± 0.026	0.609	0.23 ± 0.32	0.316	0.44 ± 0.46	0.344	6550
HD 189733	0.615 ± 0.028	~ 0.67	0.52 ± 0.26	~ 0.49	0.14 ± 0.42	~ 0.21	6750

Рис 2: Наблюдаемые кривые блеска двойной системы с экзопланетой HD 209458 из работы [2], построенные для длин волн (снизу вверх) 3201Å, 3750Å, 4300Å, 4849Å, 5398Å, 5802Å, 6779Å, 7755Å, 8732Å, и 9708Å. Внизу указаны соответствующие распределения невязок. Сплошные линии - теоретические кривые, полученные в рамках модели с нелинейным (квадратичным) потемнением к краю.

Рис 3: Зависимость коэффициента потемнения к краю x звезды HD 209458 в предположении линейного закона потемнения к краю от длины волны. Значения коэффициента потемнения к краю получены на основе анализа кривых блеска из работы [2]. Ошибки коэффициентов потемнения к краю получены на основе метода дифференциальных поправок. Ошибка приведена на уровне 2σ . Теоретические значения коэффициентов потемнения к краю в фотометрических системах ugriz и UBVRIJ приведены из работы [14].

Рис 4: Зависимость коэффициента потемнения к краю x звезды HD 189733 в предположении линейного закона потемнения к краю от длины волны λ . Значения коэффициента потемнения к краю получены на основе анализа кривых блеска (левой ветви) из работы [15]. Ошибки коэффициентов потемнения к краю получены на основе метода дифференциальных поправок. Ошибка приведена на уровне 2σ . Теоретические значения коэффициентов потемнения к краю в фотометрических системах ugriz и UB-VRIJ приведены из работ [14, 16, 17].

Рис 5: Зависимость отношения радиуса планеты к радиусу звезды от длины волны согласно результатам данной работы (темные кружки), и согласно работе [15] (темные квадраты). В обоих случаях указаны ошибки, полученные на уровне 1σ . В нашем случае ошибки больше ввиду того, что коэффициент потемнения к краю не фиксирован, а ищется совместно с другими параметрами задачи. Систематическое различие на 0.3% вызвано тем, что нормировка кривой блеска в нашем случае выполнена с использованием среднего внезатменного блеска системы.

Список литературы

- T. M. Brown, D. Charbonneau, R.L. Gilliland et al., Astrophys.J. 552, 699 (2001).
- [2] H. A. Knutson, D. Charbonneau, R. W. Noyes, T. M. Brown, R. L. Gilliland, Astrophys.J. 655, 564 (2007).
- [3] I.A.G. Shellen, E.J.W. de Mooij, S.Albrecht, Nature. **459**, 543 (2009)
- [4] Eds. C. Bertout, T. Forveille, N.Langer, S.Shore, Astron & Astrophys 506, 1 (2009).
- [5] D.G. Koch, et al., Astrophys.J. **713**, L79 (2010).
- [6] Interactive Extra-solar Planets Catalog, http://exoplanet.eu/catalog.php
- [7] J. Southworth, Monthly Not. Roy. Astron. Soc. **386**, 1644 (2008).
- [8] F. Pont, R.L. Gilliland, C. Moutou, Astron & Astrophys 476, 1347 (2007).
- [9] D.G. Koch, W.J. Borucki, J.F.Rowe et al., Astrophys.J. **713**, 131 (2010).
- [10] E.W. Dunham, W.J. Borucki, D.G. Koch et al., Astrophys.J. 713, L136 (2010).
- [11] D.W. Latham, W.J. Borucki, D.G. Koch et al., Astrophys.J. 713, L140 (2010).
- [12] Черепащук А.М., Астрон. журн. 70, 1157. (1993)
- [13] Гончарский А.В., Черепащук А.М., Ягола А.Г. // Некорректные задачи астрофизики, М., Наука, 1985.
- [14] A. Claret, Astron & Astrophys **428**, 1001 (2004).
- [15] F. Pont, H. Knutson, R. L. Gilliland et al., Monthly Not. Roy. Astron. Soc. 385, 109 (2008).

- [16] A. Claret, Astron & Astrophys **335**, 647 (1998).
- [17] A. Claret, Astron & Astrophys **363**, 1081 (2000).