РОССИЙСКАЯ АКАДЕМИЯ НАУК ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ АСТРОНОМИИ РОССИЙСКОЙ АКАДЕМИИ НАУК

На правах рукописи

Рябчикова Татьяна Александровна

ХИМИЧЕСКАЯ СТРУКТУРА АТМОСФЕР МАГНИТНЫХ ПЕКУЛЯРНЫХ ЗВЕЗД

(01.03.02 - астрофизика и звездная астрономия)

Диссертация на соискание ученой степени доктора физико-математических наук

Москва 2014

Оглавление

B	веде	ение		4
1	Me	тоды	и средства анализа звездных спектров	18
	1.1	Венск	ая база атомных параметров спектральных линий – VALD	18
		1.1.1	Классификация линий двукратно-ионизованного атома неодима (Nd III)	23
		1.1.2	Вероятности переходов (силы осцилляторов) линий Ga II	30
	1.2	Метод	цы расчета моделей атмосфер звезд	32
		1.2.1	Метод ODF	33
		1.2.2	Метод OS	34
		1.2.3	LL метод учета поглощения в линиях. Программа LLmodels	34
	1.3	Метод	цы анализа химического состава звездных атмосфер	37
		1.3.1	Расчет содержания химических элементов по эквивалентным шири-	
			нам линий	37
		1.3.2	Спектральный синтез	39
		1.3.3	Сравнение с наблюдениями	43
		1.3.4	Программы стратификационного анализа химического состава	44
	1.4	Вывод	цы	47
2	Хи	миче	ский состав атмосфер магнитных пекулярных (Ар)	
	зве	зд		48
	2.1	Набли	одения и обработка спектров	50
	2.2	Опред	целение параметров модели звездной атмосферы и оценка ошибок	50
		2.2.1	Определение скорости вращения	56
		2.2.2	Определение магнитного поля и учет влияния магнитной интенсифи-	
			кации	57
	2.3	Хими	ческий состав атмосфер Ар звезд в интервале температур 6400–12000К	63
		2.3.1	Температурное поведение содержания элементов Si, Ca, Cr, Fe в ат-	
			мосферах магнитных пекулярных звезд	66
		2.3.2	Сравнение с предсказаниями диффузионной теории	70
		2.3.3	Редкоземельные элементы в атмосферах Ар звезд	73
	2.4	Вывод	цы	77

3	CT]	ратификация химических элементов в атмосферах пеку-	-
	ляр	оных звезд	79
	3.1	Наблюдательные проявления химической стратификации	79
	3.2	Анализ вертикального распределения элементов в атмосферах магнитных	
		химически пекулярных звезд	82
		3.2.1 Выбор спектральных линий	82
		3.2.2 Стратификация Si – Ba	83
		3.2.3 Сравнение с диффузионными расчетами	99
	3.3	Стратификация редкоземельных элементов в атмосферах холодных пеку-	
		лярных звезд	103
	3.4	Стратификация Са и изотопов Са в атмосферах Ар звезд	108
	3.5	Выводы	117
4	Mo	оделирование пульсирующей магнитной звезды HD 24712	119
	4.1	Наблюдение пульсаций в атмосфере HD 24712	120
	4.2	Самосогласованная эмпирическая стратификационная модель атмосферы	
		HD 24712	124
	4.3	Распространение пульсационной волны в слоистой атмосфере	129
	4.4	Выводы	137
За	акли	очение	139
Л	итеј	ратура	142
Π	рил	ожение №1 к Главе II	160
Π	рил	ожение №2 к Главе III	168
Π	рил	ожение №3 к Главе IV	179

Введение

Химически пекулярные звезды (CP stars) являются звездами верхней части главной последовательности, которые имеют в спектрах аномально сильные линии некоторых химических элементов (He, Hg, Mn, Si, Cr, Sr, Eu). Такие особенности в спектрах этих звезд были замечены еще в конце XIX века при работе с классификацией звезд по Гарвардским пластинкам и были отмечены буквой 'P'. Все СР звезды разделяются на две большие группы: магнитные (Bp-Ap или в более общем виде Ap) и немагнитные (HgMn и Am звезды). В атмосферах HgMn и Am (звезды с усиленными линиями металлов) глобальных магнитных полей не зарегистрировано. На диаграмме Герцшпрунга-Рассела (ГР) все СР звезды расположены в полосе Главной Последовательности (ГП) в интервале температур примерно от 17000 до 6000 K, причем самыми горячими являются He-strong звезды, а самыми холодными – SrCrEu, Am и Sr- звезды. По кинематическим характеристикам СР звезды принадлежат тонкому диску Галактики с возрастом около 109 лет. Магнитные звезды (Ap/Bp) - это подкласс СР звезд ГП, в атмосферах которых зарегистрировано крупномасштабное магнитное поле. В первом приближении геометрия магнитного поля может быть представлена магнитным диполем или комбинацией диполь + квадруполь. Как и другие СР звезды магнитные звезды имеют в спектрах аномально усиленные или ослабленные (например, линии He I) линии некоторых химических элементов. Магнитные звезды расположены в центральной части ГП в диапазоне спектральных классов B5 - F5 (4 - 1.5 масс Солнца; 15000 - 6500 К по эффективной температуре), и обычно они разбиваются на группы, название которых определяется химическим(и) элементом(ами) с наиболее аномальной интенсивностью линий в спектре. В порядке убывания температуры это группы He-strong, He-weak (усиленные и ослабленные линии гелия), Si, SiCr, CrEu, SrCrEu звезд. Магнитные звезды составляют 10 - 12 % от нормальных звезд в спектральном диапазоне В5 - А0 с резким уменьшением до одного процента относительного числа в сторону поздних спектральных классов от A0 до F5. Впервые магнитное поле на звезде (не путать с магнитным полем солнечных пятен) было измерено американским астрофизиком Хорасом Бэбкоком в 1947 году по смещению спектральных линий в поляризованном свете, вызванному эффектом Зеемана. В наблюдениях с Зеемановским анализатором, который позволяет регистрировать отдельно спектры в разном состоянии круговой и линейной поляризации (I,V,Q и U - параметры Стокса), чаще всего используется анализатор круговой поляризации V. При этом измеряется усредненный по поверхности звезды компонент магнитного поля, направленный к наблюдателю, так называемое продольное магнитное поле. Если магнитное поле достаточно сильное, то магнитное расщепление спектральных линий можно измерить и в неполяризованном спектре в звездах с узкими линиями. В этом случае мы измеряем усредненный по поверхности звезды модуль вектора магнитного поля или поверхностное поле. Следует отметить, что величина поверхностного поля всегда больше величины продольного поля. Высокое спектральное разрешение современных звездных спектрографов ($R = \lambda / \Delta \lambda \sim 100000$) позволяет измерять минимальные поверхностные поля 1000 гаусс по неполяризованным спектрам. К настоящему времени примерно для 400 Ар/Вр звезд имеются прямые измерения продольного или поверхностного магнитного поля (Романюк & Кудрявцев, 2008). Это около 12 % от числа звезд, классифицированных по спектрам как Ар/Вр. Диапазон измеренных магнитных полей в магнитных звездах очень велик и составляет 90 - 20000 гаусс для продольного поля и 1250 - 34000 гаусс для поверхностного поля. Самое сильное магнитное поле 34000 гаусс измерено Бэбкоком в 1960 году в атмосфере Ар звезды HD 215441 – звезда Бэбкока (Babcock, 1960). У подавляющего числа магнитных звезд напряженность поля периодически меняется, причем эти изменения сопровождаются, как правило, изменением с тем же периодом интенсивности линий аномальных элементов в фазе или в противофазе с магнитным полем. Переменность магнитного поля и интенсивности линий объясняются в рамках модели наклонного ротатора, согласно которой ось магнитного поля наклонена под произвольным углом к оси вращения звезды, а неоднородное распределение химических элементов по поверхности определяется магнитной геометрией. При вращении такой звезды наблюдатель видит разные проекции дипольного поля и связанных с ним неоднородностей химического состава. Предполагается, что пятнистая структура поверхности магнитных пекулярных звезд связана с магнитным полем.

Ввиду того, что по общим характеристикам – температуре, массе, светимости, профилям водородных линий, Ар звезды не отличаются от нормальных звезд ГП, предполагается, что наблюдаемые аномалии химического состава Ар звезд относятся не ко всей звезде, а только к самым поверхностным слоям - звездной атмосфере, которая составляет $\sim 4 \times 10^{-4}$ радиуса звезды. Для объяснения химии Ар звезд Michaud (1970) рассмотрел процесс создания химических аномалий в звездных атмосферах, устойчивых по отношению к турбулентным движениям, в котором происходит диффузия элемента под совокупным действием гравитационного осаждения и радиационного ускорения. В зависимости от преобладания одного из процессов химический элемент может 'тонуть' вглубь со дна конвективной зоны (наилучший пример – гелий) или всплывать и накапливаться в атмосфере. Конвективная зона (например, зона HII), выполняет роль резервуара, обеспечивающего накопление элемента в верхних радиационных слоях атмосферы. Michaud et al. (1976) рассчитали диффузию химических элементов в оболочках звезд с массами от одной до пяти солнечных масс. Под оболочками здесь подразумеваются слои от фотосферы и глубже. Эти первые приблизительные расчеты показали, что некоторые элементы, Mg, Ca, должны иметь дефицит содержания в звездах с 1.2 – 2.0 M_{\odot} , тогда как элементы железного пика должны наблюдаться в избытке, начиная с массы $1.4 M_{\odot}$, что соответствует эффективной температуре 6500 К. Интересно, что само железо должно наблюдаться в дефиците вплоть до $T_{\rm eff}$ =9000 К. Чтобы правильно рассчитать конечное распределение по глубине в атмосфере звезды необходимо учитывать детальную структуру атомов каждого элемента в первых стадиях ионизации и решать уравнение переноса для большого количества частот. Такие расчеты были проведены Бабелем (Babel, 1992) для элементов Ca, Ti, Cr, Mn, Sr для температуры 8500 K, и впервые было показано, что в атмосфере звезды диффузия приводит к резким градиентам в распределении содержания элементов. В первом приближении это распределение можно представить ступенчатой функцией со скачком на глубине верхней границы конвективной зоны HII, которая по критерию Шварцшильда соответствует log $\tau_{5000} \sim -0.6$. Точность спектральных наблюдений того времени не позволила детально исследовать химическое строение атмосфер Ар звезд, чтобы подтвердить или опровергнуть теорию диффузионного разделения элементов. Необходимость детального исследования строения атмосфер Ар звезд стало особенно важным после открытия нерадиальных пульсаций Ар звезд (Kurtz, 1978). Пульсации были открыты по фотометрическим наблюдениям, но затем были подтверждены по изменению лучевых скоростей (RV) линий (Kanaan & Hatzes, 1998; Malahushenko et al., 1998). Исследование отдельных линий показало, что переменность RV имеет избирательный характер (Саванов и др., 1999; Kochukhov & Ryabchikova, 2001), что безусловно отражает особенности химического строения атмосфер пульсирующих Ap (roAp - rapidly oscillating Ap) звезд.

Цель работы

Основной задачей диссертации является детальное исследование химической структуры атмосфер магнитных пекулярных звезд и построение модели, адекватно объясняющей наблюдаемые спектральные особенности этих звезд: профили спектральных линий, аномалии химического состава, распределение энергии в спектрах, пульсационные характеристики спектральных линий. Такое исследование, основанное на современной спектроскопии высокого разрешения, возможно только при наличии соответствующих по точности данных по атомным параметрам спектральных линий. Поэтому, сбор, классификация, критический анализ данных и создание на этой основе базы данных атомных параметров спектральных линий VALD, являются существенной частью диссертации.

Научная новизна работы

В ходе выполнения диссертации впервые было получено несколько важных результатов:

- Предложена новая классификация уровней энергии двукратно-ионизованного атома Nd, что позволило существенно увеличить количество линий этого важного для анализа спектров Ap и гоAp звезд элемента.
- Получены эмпирические вероятности переходов линий Ga II, включенные в базу данных VALD.
- Получено наблюдательное подтверждение диффузионного разделения элементов в атмосферах Ар звезд как по анализу усредненного содержания элементов, так и по анализу профилей индивидуальных линий (стратификация химических элементов в атмосфере).
- Обнаружена и исследована температурная зависимость наблюдаемой аномалии редкоземельных элементов (REE-аномалия), определяющая эмпирическое положение верхней границы полосы неустойчивости пульсирующих Ap (roAp) звезд. REEаномалия есть разность между содержаниями редкоземельных элементов, полученных отдельно по линиям первых и вторых ионов.

- Для Ар звезд предложено объяснение наблюдаемых аномалий профилей линий инфракрасного триплета Са II как результат дифференциального разделения изотопов Са в атмосфере, вызванного, вероятно, совместным действием радиационной диффузии и светоиндуцированного дрейфа.
- Предложена модель распределения редкоземельных элементов в виде слоя высокой концентрации в верхних слоях атмосферы звезды выше lg \(\tau_{5000} = -3\), объясняющая наблюдаемые REE-аномалии. Такое распределение подтверждается расчетами при учете отклонения от термодинамического равновесия.
- Построена модель распределения химических элементов в атмосфере roAp звезд, объясняющая наблюдаемые характеристики пульсационной волны.

Научная, методическая и практическая значимость работы

Научная и практическая значимость результатов исследований определяется тем, что все основные результаты используются в научных и прикладных работах как в нашей стране, так и за рубежом. Особенно это относится к базе данных VALD, которой регулярно пользуются более 1700 спектроскопистов из 52 стран. В некоторых университетах США VALD включен в программу практических занятий по спектральному анализу.

Протестированы различные программы детального анализа звездных атмосфер, такие как LLmodels, SYNTH3 WIDTHmf, BINMAG ddaFIT, необходимые для исследования спектров звезд с высоким спектральным разрешением, получаемых с современными спектральными приборами. Методы стратификационного анализа активно используются в ряде астрономических учреждений России, например, в САО РАН (Семенко и др., 2008a,b; Титаренко и др., 2012). Результаты анализа стратификации химических элементов в атмосферах Ар звезд, проведенного на основе спектров высокого разрешения с использованием самых современных методов спектрального анализа, являются необходимым элементом как для развития и усовершенствования теоретических расчетов, так и для улучшения методов анализа наблюдений.

Модель слоистой структуры атмосфер Ар звезд с концентрацией элементов группы железа и редкоземельных элементов в разных слоях атмосферы звезды, впервые предложенная нами в 2002 и детально разработанная в настоящей диссертации, является основной моделью при экспериментальных и теоретических исследованиях пульсаций в атмосферах roAp звезд.

Общая цитируемость представленных к защите работ превышает 1000.

Основные положения, выносимые на защиту

- 1. Создание информативной части Венской базы атомных параметров спектральных линий VALD.
- 2. Отождествление и классификация линий Nd III в спектрах Ар-звезд и определение сил осцилляторов линий Ga II.
- Исследование температурной зависимости содержаний Fe и Cr в атмосферах магнитных пекулярных звезд и объяснение этой зависимости в рамках диффузионной теории.
- 4. Результаты комплексного исследования PrNd-аномалий в Ap и roAp звездах; предсказание и обнаружение пульсаций в атмосферах звезд по наблюдаемым PrNdаномалиям.
- 5. Обнаружение резких высотных градиентов в содержаниях элементов от Si до Zr со значительными концентрациями этих элементов в глубоких слоях атмосферы; исследование стратификации Ca в Ap-Bp звездах и модель стратификационного разделения изотопов Ca в их атмосферах.
- Эффективный тест, основанный на неравновесной ионизации, для проверки нашей гипотезы формирования линий редкоземельных элементов Pr и Nd во внешних слоях атмосферы.
- 7. Определение пульсационных характеристик индивидуальных линий в атмосфере roAp звезды HD 24712и модель распространения пульсационной волны.

Апробация работы

Результаты работы докладывались и обсуждались на следующих семинарах и конференциях:

1. астрофизические семинары Института астрономии РАН

- 2. астрофизические семинары Института астрономии Венского Университета
- 3. астрофизические семинары в Индийском институте астрофизики (Бангалор) и Aryabhatta Research Institute of Observational Sciences (Найнитал)
- международная конференция "M.A.S.S.; Model Atmospheres and Spectrum Synthesis" 5th Vienna workshop, 1996, Вена, Австрия
- международная конференция "Stellar Magnetic Fields", 13-18 мая 1996, САО РАН, Нижний Архыз, РФ
- 6. коллоквиум "International Cooperation in Dissemenation of the Astronomical Data", 2
 9 июля 1996, С-Петербург, РФ
- 7. 6-й международный коллоквиум "Atomic Spectra and Oscillator Strengths" (ASOS 6),
 9 13 августа 1998, Виктория, Канада (приглашенный доклад)
- международная конференция "Magnetic Fields of Chemically Peculiar and Related Stars", 23-27 сентября 1999, САО РАН, Нижний Архыз, РФ
- XII National Conference of Yugoslav Astronomers and International Workshop on the Development of Astronomical Databases, 19-21 ноября 1999, Белград, Югославия
- международная конференция "Magnetic Fields in O, B and A Stars: Origin and Connection to Pulsation, Rotation and Mass Loss", 27 ноября - 1 декабря 2002, Ммабато, ЮАР (приглашенный доклад)
- симпозиум MAC No.210 "Modelling of Stellar Atmospheres", 17-21 июля 2002, Уппсала, Швеция (приглашенный доклад)
- "IV Serbian Conference on Spectral Line Shapes", 10-15 октября 2003, Аранделовач, Сербия (приглашенный доклад)
- 13. симпозиум MAC No. 224 "The A-Star Puzzle", 8-13 июля 2004, Попрад, Словакия (приглашенный доклад)
- международная конференция "Element Stratification in Stars: 40 Years of Atomic Diffusion", 6 - 10 июня 2005, Герс, Франция (приглашенный доклад)

- международная конференция "Physics of Magnetic Stars", 28-31 августа 2006, САО РАН, Нижний Архыз, РФ (приглашенный доклад)
- 16. Vienna Workshop on the Future of Asteroseismology, 20 22 сентября 2006, Вена, Австрия
- СР#АР Workshop of the European Working Group on CP Stars, 10-14 сентября 2007, Вена, Австрия (приглашенный доклад)
- 9-й международный коллоквиум "Atomic Spectra and Oscillator Strengths" (ASOS 9),
 7-10 августа 2007, Лунд, Швеция
- всероссийская конференция "Ультрафиолетовая Вселенная-2008", 19 20 мая 2008, Москва, РФ (приглашенный доклад)
- XIX конференция по Фундаментальной Атомной Спектроскопии, 22-29 июня 2009, Архангельск-Соловки, 2009
- объединенная дискуссия JD4 "Progress in Understanding of the Physics of Ap and Related Stars" в рамках Генеральной Ассамблеи МАС, 3-14 августа 2009, Рио де Жанейро, Бразилия (приглашенный доклад)
- международная конференция "Ультрафиолетовая Вселенная-2010", 31 мая 4 июня 2010, Санкт-Петербург, РФ (приглашенный доклад)
- международная конференция "Magnetic Stars", 27 августа 1 сентября 2010, САО РАН, Нижний Архыз, РФ (приглашенный доклад)
- 24. совещание рабочей группы "Звездные атмосферы", 7-10 октября 2010, Казань, РФ (устный доклад)
- 25. Interdisciplinary Workshop on Plasma Physics, 6-7 мая 2011, Мадрид, Испания (приглашенный доклад)
- 41-я ежегодная студенческая научная конференция "Физика Космоса", Уральский Федеральный университет, 2012 (приглашенный доклад)
- совещание рабочей группы "Звездные атмосферы", 11-14 июня 2012, КрАО, Крым, Украина (устный доклад)

- 28. международная конференция "Putting A Stars into Context: Evolution, Environment, and Related Stars", 3-7 июня 2013, Москва, РФ (приглашенный доклад)
- 29. 11-й международный коллоквиум "Atomic Spectra and Oscillator Strengths" (ASOS 11), 5-9 августа 2013, Монс, Бельгия (приглашенный доклад)

Личный вклад автора

Личный вклад автора диссертации состоит в создании и поддержке информационной части базы данных VALD, широко используемой астроспектроскопистами во всем мире. Диссертант участвовала в тестировании всех программ для анализа спектров звезд, использованных в диссертации. Во всех публикациях, выполненных в соавторстве, анализ химического состава и проведенный комплексный стратификационный анализ атмосфер Ар звезд выполнен лично диссертантом. Идея концентрации редкоземельных элементов в верхних слоях атмосфер гоАр звезд принадлежит соискателю и подтверждена неЛТР-расчетами, для которых соискателем был предоставлен наблюдательный материал и данные об атомных параметрах линий (11, 21). На основании стратификационного исследования атмосфер диссертантом была предложена модель распространения пульсационной волны в слоистой атмосфере магнитных пекулярных звезд, которая объясняет наблюдаемые пульсационные характеристики подавляющего большинства гоАр звезд. В теоретическом моделировании пульсаций в HD 24712 (6) выбор модели был основан на распределении наблюдаемых пульсационных характеристик в атмосфере этой звезды, полученном диссертантом.

Список публикаций по теме диссертации

- Shulyak D., Ryabchikova T., and Kochukhov, O. "Fundamental parameters of bright Ap stars from wide-range energy distributions and advanced atmospheric models". Astron. Astrophys. 551, A14, 10 pp. (2013)
- Alentiev, D., Kochukhov, O., Ryabchikova, T., Cunha, M., Tsymbal, V., Weiss, W. "Discovery of the longest period rapidly oscillating Ap star HD 177765". MNRAS 421, L82-L86 (2012)

12

- Fossati L., Ryabchikova T., Shulyak D. V., Haswell C. A., Elmasli A., Pandey C. P., Barnes T. G., and Zwintz K. "The accuracy of stellar atmospheric parameter determinations: a case study with HD 32115 and HD 37594". MNRAS 417, 495-507 (2011)
- Ryabchikova T., Leblanc F., and Shulyak, D. "Modelling the Atmospheres of Peculiar Magnetic Stars". In *Magnetic Stars*, Proc. Int. Conf, eds. I.I Romanuyk and D.O.Kudryavtsev, 69-80 (2011)
- Shulyak D., Ryabchikova T., Kildiyarova R., and Kochukhov O. "Realistic model atmosphere and revised abundances of the coolest Ap star HD 101065". Astron. Astrophys. 520, A88, 12 pp. (2010)
- Saio H., Ryabchikova T., and Sachkov M. "Pulsations in the atmosphere of the roAp star HD24712 - II. Theoretical models". MNRAS 403, 1729-1738 (2010)
- Ryabchikova T., Fossati L., and Shulyak D. "Improved fundamental parameters and LTE abundances of the CoRoT solar-type pulsator HD 49933". Astron. Astrophys. 506, 203-211 (2009)
- Fossati L., Ryabchikova T., Bagnulo S., Alecian E., Grunhut J., Kochukhov O., and Wade G. "The chemical abundance analysis of normal early A- and late B-type stars". Astron. Astrophys. 503, 945-962 (2009)
- Shulyak D., Ryabchikova T., Mashonkina L., and Kochukhov O. "Model atmospheres of chemically peculiar stars. Self-consistent empirical stratified model of HD 24712". Astron. Astrophys. 499, 879-890 (2009)
- Kochukhov O., Shulyak D., and Ryabchikova T. "A self-consistent empirical model atmosphere, abundance and stratification analysis of the benchmark roAp star α Circini". Astron. Astrophys. 499, 851-863 (2009)
- Mashonkina L., Ryabchikova T., Ryabtsev A., and Kildiyarova R. "Non-LTE line formation for Pr II and Pr III in A and Ap stars". Astron. Astrophys. 495, 297-311 (2009)

- Kochukhov, O. Bagnulo S., Lo Curto G., and Ryabchikova T. "Discovery of very low amplitude 9-minute multiperiodic pulsations in the magnetic Ap star HD 75445". Astron. Astrophys. 493, L45-L48 (2009)
- Ryabchikova T. "Abundance structure of the atmospheres of magnetic CP stars". Contr. Astron. Obs. Skalnaté Pleso 38, 257-266. (2008)
- Ryabchikova T., Kochukhov O., and Bagnulo S. "Isotopic anomaly and stratification of Ca in magnetic Ap stars". Astron. Astrophys. 480, 811-823 (2008)
- Kochukhov O., Ryabchikova T., Bagnulo S., and Lo Curto G. "The discovery of highamplitude, 10.9-minute oscillations in the cool magnetic Ap star HD 115226". Astron. Astrophys. 479, L29-L32 (2008)
- Ryabchikova, T. Kildiyarova, R., Piskunov, N., Heiter, U., Fossati, L., & Weiss, W. W.
 "A comparative analysis of the laboratory and theoretical transition probabilities of the Fe-peak elements for a new release of VALD". J. Phys. Conf. Ser. 130, id.012017, 7 pp. (2008)
- Ryabchikova T., Sachkov M., Weiss W. W., Kallinger T., Kochukhov O., Bagnulo S., Ilyin I., Landstreet J. D., Leone F., Lo Curto G., Lüftinger T., Lyashko D., and Magazzù A. "Pulsation in the atmosphere of the roAp star HD 24712. I. Spectroscopic observations and radial velocity measurements". Astron. Astrophys. 462, 1103-1112 (2007)
- Kochukhov O., Tsymbal V., Ryabchikova T., Makaganyk V. and Bagnulo S. "Chemical stratification in the atmosphere of Ap star HD 133792". Astron. Astrophys. 460, 831-842 (2006)
- Ryabchikova T., Ryabtsev A., Kochukhov O., and Bagnulo S. "Rare-earth elements in the atmosphere of the magnetic chemically peculiar star HD 144897. New classification of the Nd III spectrum". Astron. Astrophys. 456, 329-338 (2006)
- Ryabchikova T., Kochukhov, O., Kudryavtsev, D., Romanyuk, I., Semenko, E., Bagnulo, S., Lo Curto, G., North, P., and Sachkov, M."HD 178892 - a cool Ap star with extremely strong magnetic field"2006, Astron. Astrophys. 445, L47-L50 (2006)

- Mashonkina L., Ryabchikova T., and Ryabtsev A. "NLTE ionization equilibrium of Nd II and Nd III in cool A and Ap stars". Astron. Astrophys. 441, 309-318 (2005)
- Ryabchikova T., Leone F., and Kochukhov O. "Abundances and chemical stratification analysis in the atmosphere of Cr-type Ap star HD 204411". Astron. Astrophys. 438, 973-985 (2005)
- 23. Рябчикова Т. А. "Температурное поведение содержания химических элементов в атмосферах магнитных пекулярных звезд". Письма в Астрон. ж. **31**, 437-446 (2005)
- 24. Глаголевский Ю. В., Рябчикова Т. А., Чунтонов Г. А. "Магнитное поле и химический состав пекулярной звезды HD 10221". Письма в Астрон. ж. **31**, 363-371 (2005)
- Shulyak D., Tsymbal V., Ryabchikova T., Stütz C., and Weiss W. W. "Line-by-line opacity stellar model atmospheres". Astron. Astrophys. 428, 993-1000 (2004)
- Ryabchikova T., Nesvacil N., Weiss W. W., Kochukhov O., and Stütz C. "The spectroscopic signature of roAp stars". Astron. Astrophys. 423, 705-715 (2004)
- 27. Ryabchikova T., Wade G. A., and LeBlanc F. "Observational Evidence for the Stratification of Chemical Abundances in Stellar Atmospheres". In Proc. IAU Symposium 210, eds. Piskunov, N., Weiss, W. W., and Gray, D. F., pp.301-312 (2003)
- Ryabchikova T., Piskunov N., Kochukhov O., Tsymbal V., Mittermayer P., and Weiss W. W. "Abundance stratification and pulsation in the atmosphere of the roAp star γ Equulei". Astron. Astrophys. 384, 545-553 (2002)
- 29. Kochukhov O., and Ryabchikova T. "Time-resolved spectroscopy of the roAp star γ Equ". Astron. Astrophys. **374**, 615-628 (2001)
- Рябчикова Т. А., Саванов И. С., Маланушенко В. П., Кудрявцев Д. О. "Исследование редкоземельных элементов в атмосферах химически пекулярных звезд. Линии Pr III и Nd III". Астрон. ж. 78, 444-451 (2001)
- Cowley C. R., Ryabchikova T., Kupka F., Bord D. J., Mathys G., and Bidelman W. P.
 "Abundances in Przybylski's star". MNRAS 317, 299-309 (2000)

- Ryabchikova T. A., Savanov I. S., Hatzes A. P., Weiss W. W., and Handler G.
 "Abundance analyses of roAp stars. VI. 10 Aql and HD 122970". Astron. Astrophys.
 357, 981-987 (2000)
- Gelbmann M., Ryabchikova T., Weiss W. W., Piskunov N., Kupka F., and Mathys G.
 "Abundance analysis of roAp stars. V. HD 166473". Astron. Astrophys. 356, 200-208 (2000)
- Саванов И. С., Маланушенко В. П., and Рябчикова Т. А. "Изменения лучевых скоростей в пульсирующих Ар звездах. Линии Pr III и Nd III в спектре *γ* Equ". Письма в Астрон. ж. 25, 916-923 (1999)
- Ryabchikova T. A., Piskunov N. E., Stempels H. C., Kupka F., and Weiss W. W. "The Vienna Atomic Line Data Base - a Status Report". Physica Scripta T83, 162-173 (1999)
- Kupka F., Piskunov N., Ryabchikova T. A., Stempels H. C., and Weiss W. W. "VALD-2: Progress of the Vienna Atomic Line Data Base". Astron. Astrophys. Suppl. Ser. 138, 119-133 (1999)
- 37. Ryabchikova T., Piskunov N., Savanov I., Kupka F., and Malanushenko V. "Eu III identification and Eu abundance in CP stars". Astron. Astrophys. **343**, 229-236 (1999)
- Ryabchikova T. A., Landstreet J. D., Gelbmann M. J., Bolgova G. T., Tsymbal V. V., and Weiss W. W. "Abundance analysis of roAp stars. IV. HD24712". Astron. Astrophys. 327, 1137-1146 (1997)
- Ryabchikova T. A., Adelman S. J., Weiss W. W., and Kuschnig R. "Abundance analysis of roAp stars. III. γ Equulei". Astron. Astrophys. **322**, 234-241 (1997)
- Саванов И. С., Рябчикова Т. А., Давыдова Е. С. "Исследование атмосфер SrCrEu звезд 17 Сот А и 21 Сот скопления Волосы Вероники". Письма в Астрон. ж. 22, 910-916 (1996)
- 41. Kupka F., Ryabchikova T. A., Weiss W. W., Kuschnig R., Rogl J., and Mathys G.
 "Abundance analysis of roAp stars. I. α Circini. Astron. Astrophys. 308, 886-894 (1996)
- Piskunov N. E., Kupka F., Ryabchikova T. A., Weiss W. W., and Jeffery C. S. "VALD: The Vienna Atomic Line Data Base". Astron. Astrophys. Suppl. Ser. 112, 525-535 (1995)

Рябчикова Т. А., Смирнов Ю. М. "Силы осцилляторов линий Ga II в видимой области спектра и содержание галлия в атмосфере HgMn звезды к Cancri". Астрон. ж. 71, 83-87 (1994)

Глава 1. Методы и средства анализа звездных спектров

1.1. Венская база атомных параметров спектральных линий – VALD

Для того, чтобы воспроизвести наблюдаемый спектр звезды, нам необходимо знать параметры спектральных линий, из которых этот спектр состоит, а также параметры среды, в которой этот спектр формируется. Для исследования звездных атмосфер нужна модель атмосферы звезды, которая получается путем решения уравнения переноса и статистического равновесия. Структура атмосферы, т.е. распределение основных параметров - температуры, плотности, давления с глубиной, зависит от адекватного учета поглощения, в которое входит как непрерывное поглощение, так и поглощение в спектральных линиях на разных глубинах атмосферы. Таким образом, линейчатое поглощение влияет на формирование спектра как бы двойным образом, формируя, во первых, выходящий поток, который мы наблюдаем, я также влияя на структуру атмосферы через вклад в общий коэффициент поглощения. Для детальной интерпретации спектра и определения химического состава звездной атмосферы нам необходимо знать параметры спектральных линий с большой точностью. Для учета линий в общем поглощении основным критерием является не столько точность данных для индивидуальных линий, сколько полнота списков линий, чтобы не потерять возможных источников поглощения.

Каждая спектральная линия характеризуется определенным набором параметров – длина волны, энергия, главное квантовое число J, фактор Ланде нижнего и верхнего уровней, вероятность перехода, а также параметры затухания. В их число входят естественное или радиационное затухание, столкновение с заряженными частицами электронами, протонами и ионами (квадратичный эффект Штарка - Stark), столкновение с нейтральными атомами водорода и других элементов (эффект ван дер Ваальса - VdW). Кроме этого элемент может иметь несколько изотопов, поглощающих на разных длинах волн. Энергетические уровни изотопов с нечетными массами ядер расщепляются, образуя сверхтонкую структуру и производя вместо одной линии группу спектральных линий с различающимися длинами волн.

Точные параметры спектральных линий получаются, как правило, из лабораторных экспериментов, либо в результате детальных квантовомеханических расчетов для атомов с не очень сложной структурой энергетических уровней. Эти данные публикуются в отдельных статьях и/или собраны в базы данных. Одной из самых популярных баз данных среди спектроскопистов является база данных Атомных спектров Национального института стандартов и технологий США - ASD-NIST¹. В ней собраны критически оцененные результаты измерений или точных расчетов атомных параметров линий. В ASD-NIST оценка точности атомных данных проводится путем анализа точности самого эксперимента или теоретических расчетов, и в зависимости от этого отдельным параметрам, например, вероятностям перехода присваивается индекс точности. В ASD-NIST нет данных по линиям изотопов в общем формате, нет данных по сверхтонкой структуре, очень немногочисленные данные по факторам Ланде. Другой очень популярной коллекцией атомных параметров является сайт Роберта Куруца², где собраны данные по лабораторным измерениям, а также многочисленные расчеты параметров линий элементов железного пика, в первую очередь, для учета этих линий в общем коэффициенте поглощения при расчете моделей атмосфер. Форматы записей в обеих базах существенно различаются, не предусмотрены выборки для заданных параметров среды. В ASD-NIST нельзя сделать одновременную выборку по нескольким элементам/ионам; это справочная, а не рабочая база. К тому же, при обновлении версии старые версии становятся недоступными. В ASD-NIST также нет затабулированных данных для параметров уширения. С связи с этим первоочередной задачей нашего сотрудничества с Институтом астрономии Венского университета по спектроскопическому исследованию пекулярных звезд стало создание универсальной базы данных атомных параметров спектральных линий, которая получила название Vienna Atomic Line Database или VALD. Созданная в 1995 году и поддерживаемая группой астрофизиков из Австрии, Швеции и России (Piskunov et al., 1995) VALD является одной из самых используемых баз для спектрального анализа в астрономии. VALD- постоянно развивающаяся база данных. Ее вторая версия VALD2 появилась в 1999 году (Kupka et al., 1999; Ryabchikova et al., 1999b), и в настоящее время готова третья версия VALD3. VALD2 содержит около миллиона линий почти всех элементов периодической системы до шестой стадии ионизации с точными длинами волн, необходимых для спектрального анализа, и

¹http://physics.nist.gov/PhysRefData/ASD/index.html

²http://cfaku5.cfa.harvard.edu/atoms.html

более 60 млн. линий для расчета поглощения. VALD3 содержит информацию о более, чем 200 млн. спектральных линий, из которых около 1.2 млн. линий до девятой стадии ионизации имеют точные длины волн. Расширение VALD3 произошло, в основном, засчет новых теоретических расчетов атомных спектров, осуществляемых Р. Куруцем. Для каждого перехода в базе VALD содержатся длины волн, вероятности перехода, энергии и главные квантовые числа уровней, факторы Ланде, параметры уширения, обозначения уровней, имена термов, а также ссылки на работы, откуда взяты вероятности переходов. Все данные занесены в VALD в едином формате, отсортированы по длинам волн в вакууме и хранятся в специальном сжатом формате. В отличии от VALD2, где энергии уровней записывались в электрон-вольтах, в VALD3 энергии даны в $\rm cm^{-1}$, что обеспечивает более высокую точность. Также, в отличие от предыдущих версий VALD3 содержит полное описание энергетических уровней и термов, соответствующее стандартам МАГАТЭ. Для каждого перехода приводится точность значения вероятности перехода, если она дана в оригинальной публикации. Для удобства пользователей предусмотрена расширенная система ссылок на оригинальные публикации. Ссылки выдаются пользователю в системе BibTex вместе с запрашиваемыми данными. VALD базируется на трех основных компонентах: информационное содержание, набор программ для выполнения запросов и веб-интерфейс. Автор диссертации ответственна за сбор, критический анализ, ранжирование, преобразование данных в единый и сжатый форматы, а также создание конфигурационного файла всей базы данных. Схема VALD показана на Рис. 1.1.

В настоящее время около 2000 пользователей из 52 стран мира зарегистрированы в базе данных VALD, которая имеет три зеркала:

- Вена http://vald.astro.univie.ac.at/ vald3/php/vald.php
- Mocквa http://vald.inasan.ru/ vald3/php/vald.php
- Уппсала http://vald.astro.uu.se/ vald/php/vald.php

VALD содержит 180 оригинальных списков линий с точными длинами волн, которые формируются либо по отдельным элементам/ионам, либо по производителям данных, т.е. в список заносится информация для линий нескольких элементов, полученная/рассчитанная в данной лаборатории. Все списки линий вместе со ссылками можно найти на сайте VALD³. При новом поступлении данных они сравниваются с предыдущими

³http://www.astro.uu.se/valdwiki/VALD3linelists

Рис. 1.1: Схема базы данных VALD.

данными для тех же линий, если таковые имеются, и им присваивается вес (приоритет). Критический анализ новых данных происходит путем сравнения с наблюдениями стандартных звезд, в первую очередь, Солнца, а также с наблюдениями нескольких пекулярных звезд разных температур. Если новые данные превосходят предыдущие по точности, то они заносятся в базу данных с более высоким приоритетом. Приоритеты расставляются по всем параметрам. Например, как правило, для длин волн и энергий переходов самый высокий приоритет имеют данные Р. Куруца, а для вероятностей переходов приоритеты расставляются согласно критическому анализу. Все списки с расставленными приоритетами заносятся в специальный конфигурационный файл - default.cfg, в соответ-

21

Рис. 1.2: Главная страница VALD.

ствии с которым происходит отбор данных для каждой индивидуальной линии. В отличие от ASD-NIST старые данные сохраняются, поэтому пользователю предоставлена возможность создать свою собственную конфигурацию при изменении рекомендуемого конфигурационного файла default.cfg, чтобы работать с привычными для себя данными.

На Рис. 1.2 показана главная страница VALD в Москве.

VALD выполняет для пользователя 4 вида запросов:

- Show Line или Show Line ONLINE выдает пользователю по e-mail или в режиме ONLINE информацию о всех данных для отдельной линии во всех списках, и как эти данные ранжируются в окончательной выдаче пользователю (Рис. 1.3);
- Extract All возвращает пользователю список всех линий, попадающих в заданный спектральный интервал;
- Extract Element возвращает пользователю список всех линий заданного элемента/иона, попадающих в заданный спектральный интервал;
- Extract Stellar возвращает пользователю список всех линий, глубина которых

превышает заданный порог относительно уровня непрерывного излучения при заданных параметрах атмосферы и химическом составе.

Последний вид запроса является наиболее популярным среди астроспектроскопистов, поскольку он позволяет выбирать только необходимые линии для анализа конкретного спектра (см., например, Рис. 1.4, где сделан запрос на выдачу линий в области 6706-6709 Å, которые вносят более 2% относительно континуума в излучение звезды с $T_{\rm eff}$ =5500 K, log g=4.5, $\xi_{\rm t}$ =1 км с⁻¹ и солнечным химическим составом).

На Рис. 1.5 показан пример того, как проводится критический анализ лабораторных данных в VALD (Ryabchikova et al., 2008). В работе Schnabel et al. (2004) по лабораторному анализу линий Fe II приведен список линий с вероятностями переходов, измеренными с точностью 6 – 26 %. В частности, для двух линий 5325.55 Å и 5607.71 Å даны точности 24 % (0.09 dex) и 16 % (0.06 dex), сответственно. Вторая линия в спектрах звезд практически отсутствует, а для первой линии необходимо уменьшить силу осциллятора на 0.76 dex, чтобы воспроизвести ее в спектрах всех наших стандартных звезд. Обе линии исключены из списков VALD но до недавнего времени были включены в ASD-NIST на основании оценки качества эксперимента в целом. На этом примере видно различие между методами критического анализа в ASD-NIST и в VALD. В последней версии ASD-NIST для этих линий приведены данные из других источников на основании наших рекомендаций.

Кроме создания и поддержки информативной части VALD на основе критического анализа данных автор диссертации внесла вклад в наполнение VALD новыми данными.

1.1.1. Классификация линий двукратно-ионизованного атома неодима (Nd III)

Редкоземельные элементы являются визитной карточкой спектров многих пекулярных звезд, особенно более холодных. Из-за аномально сильных линий Eu II холодная часть Ap звезд даже получила название CrEu или SrCrEu-звезды. У европия всего несколько сильных линий в видимой области спектра. Дальнейшие исследования, в том числе наши, показали, что в спектрах преобладают линии других REE, в основном, Ce, Pr, Nd, причем интенсивность линий вторых ионов гораздо больше, чем первых. Из всех редкоземельных элементов самым плохо изученным оказался спектр Nd III. Martin et al. (1978) классифицировали 5 уровней основного терма $4f^{45}$ I и 24 уровня конфигурации $4f^{3}$ 5d, основываясь на неопубликованных данных Crosswhite (1976). Список линий Crosswhite, не будучи опубли-

Server: Moscow VALD3 Version: 543M

Welcome to VALD3

Logged in as: Tanya Ryabchikova Email address: ryabchik@inasan.ru

Basic extraction parameters used:

Show Line Show Line ONLINE Extract All Extract Element Extract Stellar Logout

Documentation

Rationale

Documentation News

VALD3 Mirror Servers

VALD3 Mirror Uppsala

VALD3 Mirror Vienna

VALD3 Mirror Moscow

Contact / Registration

Contact form

Basic extrus Central wavelength: 6707.00 Wavelength range: 1.000 [A] Size of scan window: 0.067 [A] Highest ion number allowed: 9 Maximum excitation potential for the lower energy level: 1209819. [cm^-1] 150.000 [eV] coted: Li

 Species requested:
 Li

 Configuration file used:
 default.cfg

 Extraction options used:
 Long format

 Extended van der Waals
 Extended van der Waals

 Wavelengths in e and in air for lambda > 2000e
 Energies in cm |-1

 log gf scaled by solar isotopic ratios
 Date and time of extraction: 2013-12-09 at 14:19 (+04:00 relative to UTC)

These are th	ese are the spectral lines found (VALD ranking is shown in parentheses below each entry):															
Database reference for the line	Wavelength [A]	Element Ion	log gf	Elow [cm^-1]	Jlow	Eup [cm^-1]	Jup	Lande eff	Lande Iow	Lande up	y Rad	y Stark	y VdW	Lower level coupling electronic configuration Term designation	Upper level coupling electronic configuration Term designation	Source Accuracy Comment
Li 1 - K 5 Bell	6707.7635 (2)	Li 1	-0.002 (2)	0.0000 (2)	0.5	14903.9835 (2)	1.5	99.000 (2)	99.00	99.00	7.560 (2)	-5.780 (2)	0.000 (2)	LS 1s2.2s 2S	LS 1s2.2p 2P*	YD,REB Li 1 - K 5 Bell (2) (7)Li
Van der Waals data	6707.7635 (0)	Li 1	0.000 (1)	0.0000 (1)	0.5	14903.9835 (1)	1.5	99.000 (1)	99.00	99.00	0.000 (1)	0.000 (1)	-7.575 (9)			BPM Van der Waals da (1) (7)Li
Li 1 - K 5 Bell	6707.9145 (2)	Li 1	-0.303 (2)	0.0000 (2)	0.5	14903.6481 (2)	0.5	99.000 (2)	99.00	99.00	7.560 (2)	-5.780 (2)	0.000 (2)	LS 1s2.2s 2S	LS 1s2.2p 2P*	YD,REB Li 1 - K 5 Bell (2) (7)Li
Van der Waals data	6707.9145 (0)	Li 1	0.000 (1)	0.0000 (1)	0.5	14903.6481 (1)	0.5	99.000 (1)	99.00	99.00	0.000 (1)	0.000 (1)	-7.575 (9)			BPM Van der Waals da (1) (7)Li
Li 1 - K 5 Bell	6707.9215 (2)	Li 1	-0.002 (2)	0.0000 (2)	0.5	14903.6321 (2)	1.5	99.000 (2)	99.00	99.00	7.560 (2)	-5.780 (2)	0.000 (2)	LS 1s2.2s 2S	LS 1s2.2p 2P*	YD,REB Li 1 - K 5 Bell (2) (6)Li
Van der Waals data	6707.9215 (0)	Li 1	0.000 (1)	0.0000 (1)	0.5	14903.6321 (1)	1.5	99.000 (1)	99.00	99.00	0.000 (1)	0.000 (1)	-7.571 (9)			BPM Van der Waals da (1) (6)Li

The data above should be combined to the following set of lines (The output in long format skipping Lande factors is displayed). Numbers in front of the source keys refer to the line list names below.

Wavelength [A, air]	Element Ion	log gf	Elow [cm^-1]	Jlow	Eup [cm^-1]	Jup	Lande	y Rad	y Stark	y VdW	Lower level coupling electronic configuration Term designation	Upper level coupling electronic configuration Term designation	Reference for wavelength
6707.7635 1 YD,REB	Li 1	-0.036 1 YD,REB	0.0000 1 YD,REB	0.5	14903.9835 1 YD,REB	1.5	99.00 1 YD,REB	7.560 1 YD,REB	-5.780 1 YD,REB	-7.575 2 BPM	LS 1s2.2s 2S 1 YD,REB	LS 1s2.2p 2P* 1 YD,REB	YD,REB Li 1 - K 5 Bell (7)Li
6707.9145 1 YD,REB	Li 1	-0.337 1 YD,REB	0.0000 1 YD,REB	0.5	14903.6481 1 YD,REB	0.5	99.00 1 YD,REB	7.560 1 YD,REB	-5.780 1 YD,REB	-7.575 2 BPM	LS 1s2.2s 2S 1 YD,REB	LS 1s2.2p 2P* 1 YD,REB	YD,REB Li 1 - K 5 Bell (7)Li
6707.9215 1 YD,REB	Li 1	-1.122 1 YD,REB	0.0000 1 YD,REB	0.5	14903.6321 1 YD,REB	1.5	99.00 1 YD,REB	7.560 1 YD,REB	-5.780 1 YD,REB	-7.571 2 BPM	LS 1s2.2s 2S 1 YD,REB	LS 1s2.2p 2P* 1 YD,REB	YD,REB Li 1 - K 5 Bell (6)Li

Key to references: 1 Li 1 - K 5 Bell

2 Van der Waals data

Рис. 1.3: Запрос Show Line ONLINE.

Server: Moscow VALD3 Version: 543M	Welcome to VALD3 Logged in as: Tanya Ryabchike Email address: ryabchik@inasa	VALD3
	Show Line Show Line ON	LINE Extract All Extract Element Extract Stellar Logout
Documentation	Extract Stellar	
Documentation	Starting wavelength :	6707 Å (air)
VALD3 Mirror Servers	Ending wavelength : Detection threshold :	6709 A (air) 0.02 (fraction, in the range 0-1)
VALD3 Mirror Uppsala VALD3 Mirror Vienna	Microturbulence : Teff :	1 km/sec 5500 K
Contact / Registration	log g : Chemical composition :	4.5 g in cgs units For example : Sr: -4.67, Cr: -3.37
Contact form	Extraction format :	Short format
	Retrieve data via	
	Require lines to have a known value of :	Radiative damping constant Stark damping constant
		Van der Waals damping constant Landé factor Term designation
	Linelist configuration	 Default Custom
	Unit selection	Energy unit: eV - Medium: air - Wavelength unit: angstrom - VdW syntax: extended
	Optional comment for request	Lithium region
	Submit request	Reset form

Рис. 1.4: Запрос Extract Stellar.

Рис. 1.5: Сравнение наблюдаемых профилей линий Fe II $\lambda\lambda$ 5325, 5607 Å (точки) с теоретическими профилями, рассчитанными с экспериментальными $\log(gf)$'s из Schnabel et al. (2004) (штриховая линия) и с теоретическими $\log(qf)$'s из работы Raassen & Uylings (1998) (сплошная линия).

кованным, широко использовался астроспектроскопистами. Следующее изучение спектра Nd III было проведено Aldenius (2001) по спектрам Фурье-спектрографа. Aldenius измерила длины волн 58 линий с точностью 0.005 см⁻¹ в волновых числах (~0.002 Å для λ 6000 Å). 38 линий были отождествлены как переходы между уровнями из Martin et al. (1978), при этом значительно улучшилась точность энергии уровней. Aldenius также предположила, что еще 20 наиболее интенсивных линий из ее списка принадлежат Nd III, однако, классифицировать их не смогла. Следует отметить, что длины волн линий в списках Crosswhite и Aldenius не всегда совпадали; линии, присутствующие в одном списке, отсутствовали в другом. Теоретический анализ спектра Nd III был проведен Бордом (Bord, 2000) и Zhang et al. (2002). В последней работе были также получены экспериментальные значения времен жизни пяти уровней конфигурации 4f³ 5d.

Необходимость расширения классификации линий Nd III определялась тем фактом, что линии этого иона часто показывали максимальную амплитуду пульсаций в атмосферах roAp звезд (см. Главу IV). По измерениям пульсаций лучевых скоростей в атмосферах roAp звезд γ Equ (Kochukhov et al., 2004) и HD24712 (Ryabchikova et al., 2007) были отобраны классифицированные линии Nd III, а также неотождествленные линии, показывающие такие же пульсационные характеристики - амплитуду и, особенно, фазу пульсаций. В Главе IV будет показано, что пульсации лучевых скоростей в roAp звездах носят очень избирательный характер: линии разных элементов/ионов имеют различающиеся амплитуды и фазы пульсаций, что почти однозначно указывает на принадлежность данной линии тому или иному элементу. Для измерения длин волн был также использован спектр холодной гоАр звезды HD217522, полученный со спектрографом UVES 8.2 м телескопа ESO (подробнее об этих наблюдениях см. Главу III). Разрешающая сила $R = \lambda / \Delta \lambda = 80\,000$, поэтому точность позиционных измерений спектра этой очень медленно вращающейся звезды с небольшим магнитным полем $\langle B \rangle < 2$ кГс достаточно высока, ~0.005 Å для неблендированных линий. Окончательный список состоял примерно из 80 линий, включающих 27 наиболее сильных классифицированных линий Nd III и 9 неклассифицированных линий из списка Aldenius. Предварительная классификация была проведена на основе сравнения наблюдаемых интенсивностей линий с теоретическими расчетами Bord (2000). Было очевидно, что для правильной классификации бо́льшего количества линий необходимо пересмотреть классификацию уровней из Martin et al. (1978). Чтобы проверить предварительную классификацию, в Институте спектроскопии РАН были проведены расчеты структуры уровней Nd III по программе Коуэна (Cowan, 1981). Затем, к подготовленному списку линий была применена классификационная процедура по программе IDEN (Azarov, 1993).

Список отождествленных и классифицированных линий Nd III представлен в Таблице 1.1. Он содержит 71 линию, 39 из которых классифицированы впервые, а часть сильных линий из списка Aldenius была переклассифицирована. Все эти линии отмечены звездочками. В первой колонке Таблицы 1.1 даны рекомендованные длины волн, во второй колонке вероятности переходов. В следующих 3-х колонках представлены энергия, квантовое число *J* и фактор Ланде нижнего уровня, а в последних 4-х колонках даны те же величины и имя LS-терма для верхнего уровня. Поскольку для такого сложного атома как Nd III типичным является смешение уровней, то в последней колонке введены символы A и B, чтобы отличить уровни с одинаковым ведущим LS-термом в смеси.

Длина волны (Å)		Нижний	урове	ень ^а	Верхний уровень				
Наст. работа b	$\log(gf)$	$E (\mathrm{cm}^{-1})$	J	g	$E \ (\mathrm{cm}^{-1})$	J	g	$\mathrm{LS}\ \mathrm{term}^f$	
*3427.0017 R	-1.69	2387.529	6.0	1.071	31559.191	6.0	1.151	$({}^{4}\mathrm{F}){}^{5}\mathrm{H}^{\mathrm{o}}\mathrm{B}$	
3433.3315	-1.70	3714.537	7.0	1.177	32832.420	7.0	1.155	$({}^{4}\mathrm{F}){}^{5}\mathrm{H}^{\mathrm{o}}\mathrm{B}$	
*3442.7891R	-1.49	1137.795	5.0	0.902	30175.690	5.0	1.051	$({}^{4}\mathrm{F}){}^{5}\mathrm{H^{o}B}$	
*3476.1892R	-2.00	2387.529	6.0	1.071	31146.429	6.0	1.060	$(^4\mathrm{F})^5\mathrm{H^oA}$	
3477.8359	-1.66	0.000	4.0	0.605	28745.285	4.0	0.916	$(^4\mathrm{F})^5\mathrm{H^o}$	

Таблица 1.1: Классификация линий Nd III.

		**			Donuuuă unopour				
Длина волны (А)		Нижний	урове	еньа		ерхни	й уровен	нь	
Наст. работа	$\log(gf)$	$E (\mathrm{cm}^{-1})$	J	<i>g</i>	$E(\mathrm{cm}^{-1})$	J	<i>g</i>	LS term ⁷	
3537.6116	-2.60	1137.795	5.0	0.902	29397.378	5.0	0.982	(⁴ F) ⁵ H ⁶ A	
*3561.8555R	-2.31	3714.537	7.0	1.177	31781.776	7.0	1.141	(4F) ⁵ H ⁶ A	
*3590.3291	-0.59	3714.537	7.0	1.177	31559.191	6.0	1.151	(⁴ F) ⁵ H ⁶ B	
*3597.6284	-0.57	2387.529	6.0	1.071	30175.690	5.0	1.051	(⁴ F) ⁵ H ⁶ B	
3603.9826	-0.55	5093.250	8.0	1.247	32832.420	7.0	1.155	(⁴ F) ⁵ H ^o B	
*3612.3388	-0.80	0.000	4.0	0.605	27675.003	3.0	0.836	$({}^{4}\mathrm{F}){}^{5}\mathrm{H}{}^{0}$	
3621.1727	-0.52	1137.795	5.0	0.902	28745.285	4.0	0.916	$({}^{4}\mathrm{F}){}^{5}\mathrm{H}{}^{\mathrm{o}}$	
*3644.3534	-0.85	3714.537	7.0	1.177	31146.429	6.0	1.060	$(^{4}\mathrm{F})^{5}\mathrm{H}^{\mathrm{o}}\mathrm{A}$	
3701.3000	-1.06	2387.529	6.0	1.071	29397.378	5.0	0.982	$({}^{4}\mathrm{F}){}^{5}\mathrm{H}^{\mathrm{o}}\mathrm{A}$	
*3745.8637	-0.62	5093.250	8.0	1.247	31781.776	7.0	1.141	$(^{4}\mathrm{F})^{5}\mathrm{H^{o}A}$	
*4211.003	-2.43	1137.795	5.0	0.902	24878.420	5.0	1.141	$(^{4}I)^{3}H^{o}$	
*4213.3602R	-2.66	3714.537	7.0	1.177	27441.879	8.0	1.140	$(^{4}I)^{3}K^{o}$	
*4359.485 R	-3.03	2387.529	6.0	1.071	25319.572	7.0	1.099	$(^{4}I)^{3}K^{o}$	
*4414.300	-2.22	2387.529	6.0	1.071	25034.830	6.0	1.250	$(^{4}I)^{5}G^{o}$	
$*4444.997 \ R$	-2.22	2387.529	6.0	1.071	24878.420	5.0	1.141	$(^{4}I)^{3}H^{o}$	
*4466.355	-2.52	3714.537	7.0	1.177	26097.872	7.0	1.186	$(^{4}I)^{5}H^{o}$	
*4473.2922	-1.30	5093.250	8.0	1.247	27441.879	8.0	1.140	$(^4I)^3K^o$	
*4501.2346R	-2.03	1137.795	5.0	0.902	23347.692	5.0	1.153	$(^{4}I)^{5}G^{o}$	
*4507.0450R	-3.24	0.000	4.0	0.605	22181.265	5.0	1.032	$(^4I)^5H^o$	
*4570.660	-2.06	1137.795	5.0	0.902	23010.344	4.0	1.031	$(^{4}I)^{5}G^{o}$	
*4613.1780R	-3.14	2387.529	6.0	1.071	24058.489	6.0	1.122	$(^4I)^5H^o$	
4624.9799	-1.88	2387.529	6.0	1.071	24003.190	7.0	1.176	$(^{4}I)^{5}I^{o}B$	
*4627.254	-2.08	3714.537	7.0	1.177	25319.572	7.0	1.099	$(^{4}I)^{3}K^{o}$	
*4651.6225	-1.86	0.000	4.0	0.605	21491.858	4.0	0.948	$(^{4}I)^{3}H^{o}$	
*4654.312	-1.92	0.000	4.0	0.605	21479.437	3.0	0.825	$(^{4}I)^{5}G^{o}$	
*4689.052	-1.80	3714.537	7.0	1.177	25034.830	6.0	1.250	$(^{4}I)^{5}G^{o}$	
*4759.526	-1.15	5093.250	8.0	1.247	26097.872	7.0	1.186	$(^4I)^5H^o$	
*4769.6217	-1.80	2387.529	6.0	1.071	23347.692	5.0	1.153	$(^4I)^5G^o$	
*4788.4617 R	-1.77	3714.537	7.0	1.177	24592.234	8.0	1.229	$(^{4}I)^{5}I^{o}$	
*4796.4999	-1.65	1137.795	5.0	0.902	21980.505	6.0	1.084	$(^{4}I)^{5}I^{o}$	
*4821.986	-2.45	2387.529	6.0	1.071	23120.081	6.0	0.940	$(^{4}I)^{3}K^{o}$	
*4903.2410	-2.21	0.000	4.0	0.605	20388.980	4.0	0.836	$(^{4}I)^{5}H^{o}$	
*4911.6527R	-1.63	1137.795	5.0	0.902	21491.858	4.0	0.948	$(^{4}I)^{3}H^{o}$	
*4912.9436R	-1.78	0.000	4.0	0.605	20348.715	5.0	0.924	$(^{4}I)^{5}I^{o}$	
*4914.0941	-1.10	3714.537	7.0	1.177	24058.489	6.0	1.122	$(^{4}I)^{5}H^{o}$	
4921.0431	-1.89	2387.529	6.0	1.071	22702.749	7.0	1.146	$(^{4}I)^{5}I^{o}A$	
4927.4877	-0.80	3714.537	7.0	1.177	24003.190	7.0	1.176	$(^{4}I)^{5}I^{0}B$	
*4942.673	-1.23	5093.250	8.0	1.247	25319.572	7.0	1.099	$(^{4}I)^{3}K^{o}$	
*5050.6952	-1.06	2387.529	6.0	1.071	22181.265	5.0	1.032	$(^{4}I)^{5}H^{o}$	
*5084.6597R	-2.58	1137.795	5.0	0.902	20799.314	6.0	1.021	$(^{4}I)^{3}I^{o}$	
*5102.4278	-0.62	2387.529	6.0	1.071	21980.505	6.0	1.084	$(^{4}I)^{5}I^{o}$	
*5127.0441	-0.40	5093.250	8.0	1.247	24592.234	8.0	1.229	$(^{4}I)^{5}I^{o}$	
*5151.731 R	-1.54	3714.537	7.0	1.177	23120.081	6.0	0.940	$(^{4}I)^{3}K^{o}$	

Таблица 1.1: continued.

Длина волны (Å)		Нижний	урове	еньа	В	ерхни	й уровен	НЬ
Наст. работа b	$\log(gf)$	$E (\mathrm{cm}^{-1})$	J	g	$E ({\rm cm}^{-1})$	J	g	LS term^f
*5152.292	-1.21	0.000	4.0	0.605	19403.433	3.0	0.575	$(^{4}I)^{5}H^{o}$
*5193.0397	-1.18	1137.795	5.0	0.902	20388.980	4.0	0.836	$(^{4}I)^{5}H^{o}$
*5203.9236	-0.66	1137.795	5.0	0.902	20348.715	5.0	0.924	$(^4I)^5I^o$
5264.9604	-0.72	3714.537	7.0	1.177	22702.749	7.0	1.146	$(^4I)^5I^oA$
5286.7534	-1.90	5093.250	8.0	1.247	24003.190	7.0	1.176	$(^{4}I)^{5}I^{o}B$
5294.1133	-0.69	0.000	4.0	0.605	18883.652	4.0	0.640	$(^4I)^5I^o$
*5410.0994	-1.52	1137.795	5.0	0.902	19616.608	5.0	0.869	$(^{4}I)^{3}I^{o}$
*5429.7944	-1.24	2387.529	6.0	1.071	20799.314	6.0	1.021	$(^{4}I)^{3}I^{o}$
*5473.1411R	-3.03	3714.537	7.0	1.177	21980.505	6.0	1.084	$(^{4}I)^{5}I^{o}$
*5566.0154 R	-2.33	2387.529	6.0	1.071	20348.715	5.0	0.924	$(^{4}I)^{5}I^{o}$
5633.5540	-2.22	1137.795	5.0	0.902	18883.652	4.0	0.640	$(^{4}I)^{5}I^{o}$
5677.1788	-1.45	5093.250	8.0	1.247	22702.749	7.0	1.146	$(^4I)^5I^oA$
*5802.5319R	-1.71	2387.529	6.0	1.071	19616.608	5.0	0.869	$(^{4}I)^{3}I^{o}$
5845.0201	-1.18	5093.250	8.0	1.247	22197.090	9.0	1.218	$(^4I)^5K^o$
*5851.5419R	-1.55	3714.537	7.0	1.177	20799.314	6.0	1.021	$(^{4}I)^{3}I^{o}$
5987.6828	-1.26	3714.537	7.0	1.177	20410.864	8.0	1.150	$(^{4}I)^{5}K^{o}$
6145.0677	-1.33	2387.529	6.0	1.071	18656.240	7.0	1.054	$(^{4}I)^{5}K^{o}$
6327.2649	-1.41	1137.795	5.0	0.902	16938.043	6.0	0.912	$(^{4}I)^{5}K^{o}$
$6526.6288 \mathrm{R}$	-2.51	5093.250	8.0	1.247	20410.864	8.0	1.150	$(^4I)^5K^o$
6550.2314	-1.49	0.000	4.0	0.605	15262.420	5.0	0.688	$(^4I)^5K^o$
6690.8302 R	-2.46	3714.537	7.0	1.177	18656.240	7.0	1.054	$(^4I)^5K^o$
6870.7137 R	-2.58	2387.529	6.0	1.071	16938.043	6.0	0.912	$(^4I)^5K^o$
7077.8825 R	-2.85	1137.795	5.0	0.902	15262.420	5.0	0.688	$(^4I)^5K^o$

Таблица 1.1: continued.

 a Нижние уровни принадлежат терму
 $4{\rm f}^{4\,5}{\rm I}$

 b R - длина волны, вычисленная по разности энергий известных уровней (Ritz wavelengths)

 f Верхние уровни принадлежат конфигурации 4f^35d. См. текст для A,B

Достоверность классификации новых линий Nd III была проверена двумя способами: линии должны иметь большую амплитуду пульсаций в гоАр звездах, а также в спектрах звезд с большим манитным полем теоретическая Зеемановская конфигурация должна описывать наблюдаемые профили линий. Для проверки магнитного расщепления была выбрана Ap звезда HD 144897, у которой было измерено магнитное поле 8.8 кГс по расщеплению большого количества линий в неполяризованном спектре (см. данные наблюдений в Таблицах 2.1, 2.3, A1.1 и Puc. 1.6). Скорость вращения звезды ~4 км с⁻¹. На верхней панели Puc. 1.6 показано сравнение наблюдаемого участка спектра HD 144897, содержащего переклассифицированную линию Nd III λ 4903.241 и трех вновь классифицированных нами линий $\lambda\lambda$ 4911.653, 4912.940, 4914.094, с теретическим спектром. На нижней панели представлен тот же участок спектра гоАр звезды HD 24712, где внизу представлен пульсационный сигнал (стандартное отклонение от усредненного спектра для временных рядов наблюдений в зависимости от длины волны). Видно, что новая классификация линии λ 4903.241 лучше подходит для описания наблюдаемого Зеемановского профиля линии. Остальные три линии, прежде неклассифицированные, как линии Nd III, прекрасно согласуются с наблюдениями как по Зеемановскому расщеплению, так и по пульсационным характеристикам. Полученные нами атомные параметры линий Nd III включены в базу данных VALD. Детали расчета атомной структуры Nd III представлены в нашей работе (Ryabchikova et al., 2006b).

1.1.2. Вероятности переходов (силы осцилляторов) линий Ga II

Галлий принадлежит к элементам, избыток которых достигает 2-4 порядков в атмосферах пекулярных звезд звезд как магнитной (Si-, SiCrEu-звезды), так и немагнитной (HgMn-звезды) последовательности (Takada-Hidai et al., 1986). Экспериментальных данных для линий GaII в видимой области спектра (переходы $4d^3D - 4f^3F^o, 5p^3P^o 5d^{3}D, 5s^{3}S - 5p^{3}P^{o}$) не было, были только теоретические расчеты для трех линий перехода $4d^3D - 4f^3F^o$ (Jugaku et al., 1961). В работе Andersen & Sorensen (1972) для верхних уровней $4f^3F^o$ были измерены времена жизни au методом 'пучок-фольга', что дало возможность получить экспериментальные значения вероятностей переходов линий этого мультиплета при известных факторах ветвления. Для линий, имеющих общий верхний уровень, отношение сечений возбуждения спектральных линий Q_{ik} равно отношению вероятностей переходов A_{ki} , поэтому фактор ветвления (branching factor) BF= $\frac{A_{ki}}{\sum\limits_{m < k} A_{km}} = \frac{Q_{ik}}{\sum\limits_{m < k} Q_{mk}}$ и может быть определен по значениям сечений возбуждений спектральных линий. Сечения возбуждения 32 спектральных линий Ga II были получены Ю.М.Смирновым в эксперименте по исследованию неупругих столкновений электронов с атомами галлия при энергии электронов 20 эВ (возбуждение с одновременной однократной ионизацией). Эти сечения были использованы для получения факторов ветвления, которые вместе с измеренными временами жизни позволили определить экспериментальные значения вероятностей переходов семи спектральных линий. Полученные данные приведены в Таблице 1.2. Они проверены путем анализа спектра HgMn-звезды κ Cnc (Рябчикова & Смирнов, 1994), занесены в базу данных VALD и используются при определении содержания галлия в атмосферах пекуляр-

Рис. 1.6: На верхней панели приведено сравнение наблюдаемого спектра HD 144897 (точки) в области 4902-4915 Å с теоретическим, рассчитанным со старой классификацией линий Nd III (точечная линия) и с новой (сплошная линия). На нижней панели показан тот же участок в спектре гоАр звезды HD 24712 с расчетами по новой классификации линий Nd III. Точечной линией внизу показано стандартное отклонение индивидуальных спектров временных рядов наблюдений HD 24712 от усредненного спектра. Двойные пики указывают на линии, имеющие большую амплитуду пульсационного изменения лучевых скоростей.

					$\log gf$		
$\lambda(\text{\AA})$	Переход	τ , нс	$_{\rm BF}$	$A_{ki}, 10^8 \ \mathrm{c}^{-1}$	данная работа	Jugaku et al. (1961)	
3374.95	$4d^1D_2 - 4f^1F_3^o$	$4.6{\pm}0.6$	0.86	1.87	0.35		
3375.948	$4d^1D_2 - 4f^3F_3^o$	$6.0 {\pm} 0.5$	0.12	0.20	-0.39		
3470.347	$5p^3P_2^o - 6d^3D_3$	$4.0 {\pm} 0.6$	~1	0.46	-0.24		
4251.149	$4d^3D_1 - 4f^3F_2^o$	$6.0 {\pm} 0.5$	~ 1	1.67	0.35	0.46	
4254.075	$4d^3D_2 - 4f^1F_3^o$	$4.6 {\pm} 0.6$	0.14	0.31	-0.23		
4255.722	$4d^3D_2 - 4f^3F_3^o$	$6.0 {\pm} 0.5$	0.88	1.47	0.68	0.68	
4255.722	$4d^3D_2 - 4f^3F_4^o$	$6.0 {\pm} 0.5$	~1	1.67	0.98	0.83	

Таблица 1.2: Времена жизни, фактры ветвления и силы осцилляторов некоторых линий Ga II.

ных звезд и звезд горизонтальной голубой ветви (см., например, Collado & López-García (2009); Hubrig et al. (2009)).

1.2. Методы расчета моделей атмосфер звезд

Для анализа любого спектра кроме параметров спектральных линий мы должны знать параметры среды, в которой эти линии формируются. При исследовании спектров звезд такой средой является атмосфера звезды. В нашей работе были использованы модели атмосфер, рассчитанные по разным программам, отличающимся, в основном, способами учета линейчатой непрозрачности в суммарном коэффициенте поглощения, но базирующимся на одинаковых основных предположениях:

- плоско-параллельная (1 D) геометрия;
- Локальное термодинамическое равновесие (ЛТР) используется для расчетов населенностей атомных уровней 99 химических элементов;
- атмосфера звезды находится в состоянии статического равновесия;
- атмосфера звезды находится в состоянии лучистого равновесия;

Для большинства звезд модели атмосфер были рассчитаны по программе ATLAS9 (Kurucz, 1993a), которая учитывает поглощение в линейчатом спектре как часть общей непрозрачности при расчете выходящего излучения. Изменение металличности в ATLAS9 задается одинаковым для всех химических элементов кроме водорода и гелия и масштабируется по отношению к содержанию элементов в атмосфере Солнца. Учет поглошения в линиях учитывается статистически через функцию распределения поглощения (ODF) в данном участке длин волн. В случае химически пекулярных звезд необходимо принимать во внимание отличие химического состава от масштабированного солнечного содержания, стратификацию тех или иных элементов с глубиной в атмосфере, а также (в случае звезд с сильными поверхностными магнитными полями) учитывать расщепление спектральных линий из-за эффекта Зеемана, что требует пересмотра уже существующих (классических) методов учета поглощения в спектральных линиях.

1.2.1. Метод ODF

Основной идеей данного метода является замена поглощения в спектральных линях на данном участке длин волн $\Delta\lambda$ некоторой гладкой функцией $f(\Delta\lambda)$. В ATLAS9 таблицы ODF расчитываются один раз для набора температур, давлений, химических составов (которые, как правило, берутся промасштабированными к солнечному) и ряда значений микротурбулентной скорости.

Сразу ясно, что если появляется необходимость рассмотрения моделей с "нестандартным" содержанием элементов, то возникает проблема расчета новых таблиц ODF для приведенных выше наборов физических параметров, что даже в случае постоянного содержания элементов с глубиной требует больших вычислительных ресурсов и времени (включая процедуру переселекции линий и расчет ODF таблиц). Детальное описание подобного подхода изложено в работе Piskunov & Kupka (2001). Списки линий для расчета ODF с индивидуальным химическим составом брались из базы данных VALD. В случае стратифицированного химического состава автоматически возникает необходимость расчета индивидуальных таблиц ODF для каждого слоя в атмосфере звезды, что, учитывая широкое разнообразие химических составов реальных звезд, не представляется возможным.

Для магнитных CP звезд ситуация становится еще более критичной, так как использование таблиц ODF не позволяет корректно учесть зеемановское расщепление спектральных линий. Поскольку величина и направление магнитного поля по поверхности звезды может меняться, то меняется и характер расщепления спектральных линий. Таким образом можно сделать вывод, что метод ODF в ряде случаев может не подходить для анализа атмосфер CP звезд.

1.2.2. Метод OS

Метод выборочной непрозрачности основан на статистическом распределении точек по частоте для интегрирования характеристик поля излучения во всем спектральном диапазоне. Нужная точность достигается из условия, что интеграл потока перестает меняться (с некоторой наперед заданной точностью) при дальнейшем увеличении числа точек. Таким образом, точность метода зависит от числа таких точек и их распределения, что требует калибровку данного метода каждый раз, когда происходит изменение таких важных модельных параметров, как, например, модуль магнитного поля или стратификация химических элементов.

1.2.3. LL метод учета поглощения в линиях. Программа LLmodels

Для решения упомянутых выше проблем при моделировании химически пекулярных звезд был разработан так называемый LL ("line-by-line") метод учета поглощения в спектральных линиях, реализованный в программе расчета моделей звездных атмосфер LLmodels (Shulyak et al., 2004). Основная идея данного метода заключается в использовании достаточно маленького шага по длине волны для обеспечения более-менее точного описания поглощения от *всех линий, вносящих существенный вклад в непрозрачность звездного вещества.* Очевидно, при использовании достаточно большого количества точек интегрирования (скажем, 300 000–700 000) в области, где звезда излучает большую часть энергии, разница между методами LL и OS пропадает. В LL-методе зависимость коэффициента поглощения от глубины и длины волны учитывается полностью, без привлечения дополнительных предположений и приближений. Таким образом, при расчете моделей атмосфер с применением LL-метода спектр поглощения описывается детально, практически так же, как и при расчете синтетического спектра.

Температурная структура моделей напрямую зависит от точности интегрирования потока, что требует методов, подобных методу LL. Для химически стратифицированных атмосфер, как в случае Ap звезд, вклады одних и тех же спектральных участков в суммарную непрозрачность могут отличаться по сравнению с нормальными звездами, и использование слишком большого шага по частоте (что не имело бы серьезных последствий для обычных звезд) может привести к ошибках в расчете потока в данных спектральных областях. LL-метод полностью снимает подобные вопросы.

Очевидно, что скорость счета является одной из критических проблем для технологии LL. Время счета зависит в первую очередь от выбора шага по частоте и количества спектральных линий, которые необходимо принять в расчет. Число таких линий может быть очень большим, особенно в УФ области спектра. Для корректного учета эффектов блендирования при вычислении коэффициента линейчатой непрозрачности на данной длине волны приходится учитывать вклад от всех близлежащих линий, поэтому необходимо выбрать некое окно по длине волны, в пределах которого учитывать только те линии, которые в него попадают. Поскольку крылья подавляющего большинства атомных линий лежат в пределах нескольких ангстрем, нет необходимости рассчитывать их профили вне пределов некоторого конкретного значения $\Delta \lambda$, где величина непрозрачности, производимой данной линией, становиться пренебрежимо малой. Экспериментально было найдено, что величина $\Delta \lambda = 2.5 \,\text{\AA}$ вполне достаточна для большинства линий. Таким образом, для вычисления коэффициента непрозрачности на данной длине волны λ , в LLmodels призводится суммирование поглощения от всех линий, лежащих в пределах ± 2.5 Å от λ . Подобный подход был реализован в комплексе программ STARSP (Tsymbal, 1996).

Учет широких линий, таких как линии водорода, линии H и K CaII и т.д., производится отдельно. Перед расчетом модели оценивается величина поглощения от каждой линии на расстояниях ±2.5 Å от ее центра, и если она оказывается достаточно большой, данная линия помечается как "широкая" и ее учет производится в отдельном блоке программы. Процедура тестирования линии на "ширину" занимает несколько минут на современных персональных компьютерах при числе линий порядка полумиллиона и не представляет проблем.

Программа LLmodels основана на модифицированных блоках таких программ, как ATLAS9 (Kurucz, 1993a), ATLAS12 (Kurucz, 1993b), а также на блоках по расчету линейчатой непрозрачности программы STARSP (Tsymbal, 1996). LLmodels написана полностью на языке FORTRAN 90 и может выполняться на трех платформах: Linux, Windows и Mac OS X. Программа предназначена для расчетов моделей атмосфер звезд ранних и средних спектральных классов с учетом их индивидуального химического состава, стратификации химических элементов с глубиной и эффектов магнитного поля.

Одной из основных задач LL-метода является попытка избавления от какой бы то ни было статистики при расчете коэффициента линейчатой непрозрачности. Отличия

Рис. 1.7: Сравнение наблюдаемого распределения энергии в Si-звезде CU Vir (ромбики) с теретическими, выполненными с различными программами: ATLAS9 (ODF метод с металличностью +0.5) – пунктирная линия; LLmodels с однородным химическим составом – штриховая линия; LLmodels со стратификацией Fe в атмосфере – сплошная линия.

между LL и OS методами происходят, в основном, в верхних слоях атмосферы.

Рис. 1.7 демонстрирует преимущества LL-метода при описании пекулярных характеристик в распределении энергии в спектрах Ар звезд – известная депрессия λ 5200 Å – на примере Si-звезды CU Virginis.

Для ускорения расчета модели атмосферы производится предварительный отсев спектральных линий, которые практически не вносят вклад в линейчатую непрозрачность. Селекция линий производится на основании следующего критерия

$$\frac{\alpha_l}{\alpha_c} \le x,\tag{1.1}$$

где α_l , α_c – коэффициенты поглощения в линии и континууме, x – критерий отбора. Тестовые вычисления показали, что использование критерия 10^{-2} вполне достаточно для
построения точной модели атмосферы звезды.

Предварительная селекция спектральных линий позволяет значительно уменьшить время расчета модели. Так, например, использование критериев отбора 10⁻⁴ и 10⁻² уменьшает количество линий, участвующих в вычислении непрозрачности, примерно в 20 и 100 раз, соответственно.

Для корректного учета линейчатой непрозрачности необходимы максимально полные списки линий. В качестве исходного списка линий используется список линий Куруца LOWLINES.DAT (Kurucz, 1993c), который включает в себя более 31 млн. линий элементов до пятой степени ионизации. Для горячих звезд, кроме этого списка, следует использовать список HILINES.DAT, включающий около 10 млн. линий до девятой степени ионизации. Текущая версия LLmodels использует список линий из VALD (Kupka et al., 1999), содержащий на данный момент информацию о приблизительно 60 млн. линий. Следует заметить,что основную часть VALD составляют вышеперечисленные списки Куруца. При расчете непрозрачности учитываются линии как с экспериментально известными параметрами атомных уровней и переходов, так и с предсказанными теоретически. Линии, учавствующие в расчете данной модели атмосферы, сохраняются в специальном бинарном формате. Это обеспечивает, во-первых, существенную экономию дискового пространства и, во-вторых, малое время доступа к тем или иным линиям из основной программы.

1.3. Методы анализа химического состава звездных атмосфер

1.3.1. Расчет содержания химических элементов по эквивалентным ширинам линий

Для анализа химического состава по наблюдаемым интегральным характеристикам линий - эквивалентным ширинам - была существенно модифицирована программа Куруца WIDTH9 (Ryabchikova et al., 2002). Модификация была сделана В. Цымбалом с участием автора диссертации в тестировании программы на спектрах нормальных и пекулярных звезд различных спектральных классов. Исходной информацией для программы widthV является список линий, полученных из базы VALD по запросу "extract stellar". Подставляя вместо теоретически рассчитанной для данной модели атмосферы глубины линии наблюдаемую эквивалентную ширину, получаем входной файл для widthV. Имя файла с моделью атмосферы задается после списка линий. Для каждой линии из списка рассчитывается синтетический профиль линии, и его эквивалентная ширина сравнивается с наблюдаемой. Содержание элемента варьируется до полного совпадения эквивалентной ширины синтетической линии с наблюдаемым значением. Программа рассчитывает содержания для заданного набора микротурбулентных скоростей. Выдача результатов организована по отдельным элементам/ионам с предоставлением содержаний по индивидуальным линиям, а также среднего значения по всем линиям данного иона с соответствующей дисперсией. Кроме того, для каждого иона выдаются параметры зависимости содержаний по индивидуальным линиям от эквивалентной ширины (индикатор микротурбулентной скорости), от энергии возбуждения (показатель температуры), от фактора Ланде (показатель магнитного поля) и от длины волны. Для магнитных звезд, в атмосферах которых микротурбулентная скорость обычно близка к нулю, была разработана версия, учитывающая уширение линии магнитным полем (магнитная интенсификация) путем введения псевдомикротербулентной скорости, зависящей от величины магнитного поля и фактора Ланде (см. Раздел 2.2.2). Т.е. псевдомикротербулентной скорость индивидуальна для каждой линии. Варьируя величину магнитного поля, мы находим решение с минимальной стандартной ошибкой. Это решение может дать нам оценку магнитного поля. Следует отметить, что замена реального усиления интенсивности линии из-за магнитного поля псевдомикротурбулентной скоростью допустима при полях меньших 4 кГс. При более сильных полях необходимо учитывать поле детельным расчетом зеемановской конфигурации. Пример выдачи результатов работы программы widthV по расчету содержаний по линиям нейтрального и ионизованного железа показан в виде таблиц. В Таблице 1.3 приведены содержания железа в атмосфере нормальной звезды ГП HD 49933 с небольшим дефицитом металлов, а в Таблице 1.4 приведено содержание железа практически по тем же линиям в спектре одной из самых холодных химически пекулярных звезд - звезды Пшибыльского (HD 101065). Обе звезды имеют близкие параметры атмосфер, но очень разный химический состав, хотя содержание железа у них не так уж различается. В колонках представлены следующие величины: длины волн, энергии возбуждения в эВ, логарифм силы осциллятора, фактры Ланде, наблюдаемые эквивалентные ширины каждой линии в mÅ, содержание элемента, полученное по эквивалентной ширине данной линии, отличие индивидуального содержания от среднего значения. В последней колонке приводится разница эквивалентных ширин измеренной и теоретической линий, что характеризует точность расчетов. После индивидуальных значений приводится среднее по всем

линиям содержание со среднеквадратичной ошибкой. Сразу видно, что в атмосфере нормальной звезды содержание определяется с большой точностью, тогда как для пекулярной звезды характерен большой разброс. Это свидетельствует о более сложной структуре атмосферы химически пекулярных звезд по сравнению с нормальными звездами. Микротурбулентные скорости очень разные; в атмосфере нормальной звезды $\xi_t=1.6 \text{ км c}^{-1}$, что является типичным для нормальных звезд в этом диапазоне эффективных температур, тогда как в атмосфере HD 101065 $\xi_t \leq 0.5 \text{ км c}^{-1}$, что также является типичным для атмосфер магнитных звезд, имеющих сравнительно небольшую напряженность магнитного поля. В атмосфере звезды Пшибыльского $\langle B \rangle \sim 2.3 \text{ кГс}$ (Cowley et al., 2000).

1.3.2. Спектральный синтез

В спектрах многих звездах, не обязательно пекулярных, но у которых скорость вращения превышает 20 км с⁻¹, блендирование линий не позволяет достаточно точно определять эквивалентные ширины отдельных линий, поэтому для анализа химического состава разработана программа расчета синтетического спектра SYNTH3 (Kochukhov, 2007), которая является значительно переработанной версией широко используемой нами в прошлом программы SYNTH (Piskunov, 1992). Для анализа неполяризованных спектров магнитных звезд, в которых наблюдается заметное магнитное расщепление или уширение, разработана специальная программа SYNTHMAG (Kochukhov, 2007), также являющаяся усовершенствованной версией программы магнитного спектрального синтеза, разработанной H. Пискуновым (Piskunov, 1999). SYNTH3 и SYNTHMAG предназначены для расчета теоретического спектра, излучаемого одномерной, плоско-параллельной атмосферой в предположении статического и локального термодинамического равновесий (ЛТР). Эти предположения достаточны для описания излучения большинства звезд главной последовательности спектральных классов от ранних B до поздних М.

В стандартной моде SYNTHЗ вычисляет выходящую интенсивность путем численного решения скалярного уравнения переноса для семи угловых зон на поверхности звезды. SYNTHMAG делает то же самое, но путем решения векторного уравнения переноса для заданного вектора магнитного поля в каждой из зон. В этом случае определяются профили параметров Стокса *IQUV* где *I* - профиль интенсивности в неполяризованном спектре. Затем с помощью специальной программы производится интегрирование рассчитанных интенсивностей/параметров Стокса для определнных значений макротурбуленции и проТаблица 1.3: Расчеты содержания железа по эквивалентным ширинам линий в атмосфере нормальной звезды ГП HD 49933.

Microturbulent velocity= 1.600

Fe 1

5014.9425	3.9430	-0.303	1.05	71.32	-5.075	0.03	0.00002
5049.8198	2.2790	-1.355	1.14	87.34	-5.099	0.01	-0.00005
5162.2729	4.1780	0.170	1.39	91.68	-5.158	-0.05	-0.00001
5217.3893	3.2110	-1.070	0.00	61.14	-5.160	-0.05	0.00001
5242.4911	3.6340	-0.967	0.00	50.78	-5.071	0.04	-0.00005
5263.3063	3.2660	-0.879	1.50	68.11	-5.173	-0.06	0.00000
5266.5554	2.9980	-0.386	1.28	109.39	-5.126	-0.02	0.00007
5269.5374	0.8590	-1.321	1.20	152.06	-5.147	-0.04	-0.00005
5283.6210	3.2410	-0.432	1.50	95.84	-5.111	-0.00	0.00006
5339.9294	3.2660	-0.647	0.00	81.70	-5.146	-0.04	-0.00001
5364.8713	4.4450	0.228	0.63	78.45	-5.112	-0.00	0.00002
5393.1676	3.2410	-0.715	0.00	80.25	-5.129	-0.02	0.00006
5405.7752	0.9900	-1.844	0.75	117.36	-5.111	-0.00	0.00006
5415.1993	4.3860	0.642	0.00	97.86	-5.188	-0.08	0.00008
5434.5238	1.0110	-2.122	0.00	103.12	-5.119	-0.01	0.00001
5445.0424	4.3860	-0.020	0.00	72.40	-5.003	0.11	0.00005
5462.9530	4.4730	-0.045	0.82	57.83	-5.128	-0.02	-0.00002
5569.6181	3.4170	-0.486	0.75	82.40	-5.181	-0.07	-0.00000
5586.7559	3.3680	-0.120	1.13	107.68	-5.140	-0.03	0.00002
5615.6439	3.3320	0.050	1.19	117.19	-5.201	-0.09	-0.00001
5624.5422	3.4170	-0.755	1.25	69.86	-5.150	-0.04	-0.00007
5930.1799	4.6520	-0.230	1.00	49.73	-5.003	0.11	-0.00009
5934.6549	3.9280	-1.170	1.05	30.69	-5.049	0.06	-0.00000
6065.4822	2.6080	-1.530	0.68	68.52	-5.097	0.01	-0.00002
6219.2810	2.1980	-2.433	1.66	40.38	-5.105	0.00	0.00007
6230.7230	2.5590	-1.281	1.24	85.89	-5.043	0.07	0.00003
6252.5554	2.4040	-1.687	0.95	70.82	-5.083	0.03	0.00002
6265.1340	2.1760	-2.550	1.58	36.90	-5.078	0.03	0.00000
6270.2250	2.8580	-2.464	0.49	16.68	-5.047	0.06	-0.00003
6322.6855	2.5880	-2.426	1.51	25.91	-5.074	0.03	0.00004
6335.3308	2.1980	-2.177	1.16	50.06	-5.185	-0.08	-0.00000
6400.0012	3.6020	-0.290	1.27	91.68	-5.096	0.01	0.00004
6411.6493	3.6540	-0.595	1.18	68.75	-5.160	-0.05	0.00000
6494.9805	2.4040	-1.273	1.03	96.51	-4.995	0.11	-0.00001
6858.1498	4.6070	-0.930	1.05	17.35	-5.068	0.04	-0.00000

The abundance from 35 lines is -5.109 + -0.054Slope=-6.636E-04 + -4.363E-04 for abundance vs. width Slope=3.795E-03 + -1.080E-02 for abundance vs. potential Slope=-8.267E-04 + -1.788E-02 for abundance vs. Lande factor Slope=3.904E-05 + -8.086E-05 for abundance vs. wavelengths

Fe 2

5132.6690	2.8070	-3.980	1.37	17.80 -5.140	-0.05	-0.00001
5284.1090	2.8910	-2.990	0.65	60.77 -5.156	-0.07	0.00001
5425.2570	3.1990	-3.160	1.24	37.93 -5.160	-0.07	-0.00001
5534.8470	3.2450	-2.730	0.57	63.65 -5.056	0.03	0.00000
5991.3760	3.1530	-3.540	0.80	27.44 -5.060	0.03	0.00006
6149.2580	3.8890	-2.720	1.35	36.29 -5.053	0.03	-0.00003
6247.5570	3.8920	-2.310	1.03	61.26 -4.980	0.11	-0.00005
6432.6800	2.8910	-3.520	1.82	39.32 -5.081	0.00	0.00000

The abundance from 8 lines is -5.086 +/-0.062 Slope= 1.172E-03 +/- 2.075E-03 for abundance vs. width Slope= 1.069E-01 +/- 9.083E-01 for abundance vs. potential Slope=-1.011E-02 +/- 8.870E-02 for abundance vs. Lande factor Slope= 9.488E-05 +/- 4.919E-04 for abundance vs. wavelengths Таблица 1.4: Расчеты содержания железа по эквивалентным ширинам линий в атмосфере

химически пекулярной звезды HD 101065.

Teff= 6400. lg g= 4.20 TITLE HD101065 LLmodels; stdros; stratified; scaled REE abundan

Microturbulent velocity= 0.500

Fe 1

5005.7110	3.8840	-0.180	1.33	35.20 -5.759	-0.13	-0.00006
5049.8200	2.2790	-1.355	1.14	33.30 -6.006	-0.37	-0.00000
5162.2730	4.1780	0.020	1.40	47.90 -5.481	0.15	0.00003
5217.3890	3.2110	-1.070	1.49	30.10 -5.584	0.05	0.00003
5245.6180	4.3120	-0.849	1.24	9.60 -5.570	0.06	-0.00000
5273.1640	3.2920	-0.993	1.52	30.30 -5.590	0.04	0.00004
5328.0390	0.9150	-1.466	1.13	72.00 -6.083	-0.45	-0.00004
5332.9000	1.5570	-2.777	1.50	18.00 -5.653	-0.02	0.00005
5365.3990	3.5730	-1.020	0.95	19.50 -5.627	0.00	-0.00001
5367.4670	4.4150	0.443	0.92	55.00 -5.435	0.20	0.00004
5393.1680	3.2410	-0.715	1.50	49.60 -5.426	0.20	0.00001
5405.7750	0.9900	-1.844	0.75	51.70 -6.213	-0.58	-0.00005
5415.1990	4.3860	0.642	1.17	50.30 -5.811	-0.18	0.00000
5434.5240	1.0110	-2.122	-0.01	50.00 -5.964	-0.33	-0.00000
5446.9168	0.9900	-1.914	1.25	60.00 -5.933	-0.30	0.00000
5462.9530	4.4730	-0.156	0.82	29.20 -5.460	0.17	0.00000
5569.6180	3.4170	-0.486	0.75	53.00 -5.427	0.20	-0.00001
5586.7560	3.3680	-0.120	1.13	80.60 -5.161	0.47	-0.00001
5615.6440	3.3320	0.050	1.19	61.10 -5.832	-0.20	0.00005
5658.8160	3.3960	-0.793	1.38	46.50 -5.312	0.32	0.00003
5709.3780	3.3680	-1.028	1.43	22.80 -5.713	-0.08	-0.00000
5930.1800	4.6520	-0.230	1.00	30.20 -5.223	0.41	-0.00004
5952.7180	3.9840	-1.440	0.65	8.90 -5.312	0.32	-0.00000
6008.5540	3.8840	-1.078	1.24	20.80 -5.293	0.34	-0.00001
6219.2810	2.1980	-2.433	1.66	18.50 -5.471	0.16	-0.00001
6230.7230	2.5590	-1.281	1.24	34.50 -5.875	-0.24	-0.00001
6252.5550	2.4040	-1.687	0.95	49.00 -5.251	0.38	0.00001
6265.1340	2.1760	-2.550	1.58	12.20 -5.607	0.02	-0.00000
6297.7930	2.2230	-2.740	0.99	7.70 -5.610	0.02	-0.00001
6301.5010	3.6540	-0.718	1.67	19.60 -5.898	-0.27	-0.00000
6335.3310	2.1980	-2.177	1.16	29.70 -5.424	0.21	-0.00002
6393.6010	2.4330	-1.432	0.91	50.80 -5.447	0.18	0.00000
6411.6490	3.6540	-0.595	1.18	30.40 -5.726	-0.10	0.00001
6494.9800	2.4040	-1.273	1.03	39.90 -5.905	-0.27	0.00007
6592.9140	2.7270	-1.473	1.00	18.20 -5.999	-0.37	-0.00004

The abundance from 35 lines is -5.631 + /-0.269Slope=-1.094E-03 + /-2.586E-03 for abundance vs. width Slope=1.328E-01 + /-1.917E-01 for abundance vs. potential Slope=7.080E-02 + /-2.860E-01 for abundance vs. Lande factor Slope=5.898E-05 + /-1.598E-04 for abundance vs. wavelengths

Fe 2

5132.6690	2.8070	-3.980	1.37	19.20 -4.965	0.15	-0.00000
5284.1090	2.8910	-3.190	0.65	45.60 -4.995	0.12	0.00006
5325.5530	3.2210	-3.120	1.13	35.00 -5.048	0.06	0.00001
5425.2570	3.1990	-3.160	1.24	24.50 -5.307	-0.20	-0.00005
5534.8470	3.2450	-2.730	0.57	33.10 -5.475	-0.36	-0.00000
5835.4920	5.9110	-2.372	0.79	4.80 -4.747	0.36	0.00001
6147.7410	3.8890	-2.830	0.83	30.00 -4.926	0.18	0.00006
6247.5570	3.8920	-2.310	1.03	30.90 -5.424	-0.31	-0.00001
6516.0800	2.8910	-3.320	1.07	38.60 -5.112	-0.00	-0.00001

The abundance from 9 lines is -5.111 + -0.244Slope=-7.954E-03 + -1.206E-02 for abundance vs. width Slope= 1.046E-01 + -3.833E-01 for abundance vs. potential Slope= 2.382E-02 + -3.951E-01 for abundance vs. Lande factor Slope=-4.219E-05 + -2.726E-04 for abundance vs. wavelengths екции скорости вращения на луч зрения. По умолчанию эта процедура подразумевает сферически-симметричную звезду, покрытую однородным магнитным полем.

Обе программы написаны на языке FORTRAN 77 и производят следующие операции:

- Считавание заданной модели атмосферы и списка атомарных/молекулярных линий, выдаваемых в формате базы данных VALD. Для расчета спектров магнитных звезд список линий содержит информацию о расщеплении и относительной интенсивности Зеемановских компонентов каждой линии списка. Величина магнитного поля, скорость микротурбуленции и химический состав задаются во входном файле. В случае стратифицированной атмосферы содержание элемента для каждого уровня атмосферы задается в файле с моделью.
- Расчет концентраций отдельных ионов и молекул с помощью усовершенствованной программы расчета статистического равновесия (Valenti et al., 1998). Расчет непрерывного поглощения (как в моделях ATLAS9), расчет поглощения в центрах линий и параметров фойгтовского профиля. Дробление шкалы глубин в атмосфере.
- Расчет интенсивности для заданных углов по поверхности с помощью квадратичного агоритма DELO решения уравнения переноса (Piskunov & Kochukhov, 2002), используя заранее рассчитанные поглощения в линиях металлов и в линиях водорода (Barklem et al. 2000 - для водорода). Расчет профилей линий происходит не с постоянным шагом, а путем добавления точек профиля до достижения требуемой точности аппроксимации формы профиля линии.

SYNTHMAG рассчитывает профили IQUV параметров Стокса для простейшей модели однородного магнитного поля, определяемого тремя компонентами вектора: радиальный компонент B_r , меридиональный компонент B и азимутальный компонент B. Геометрия магнитного поля показана на рис. 1.8.

Для программы SYNTH3 формат входного файла со спектральными линиями - это формат выдачи по запросу 'extract stellar' из базы VALD в "short format". Для расчетов синтетического спектра в магнитном поле используется информация, получаемая также по запросу 'extract stellar' из базы VALD, но в "long format". Эта информация преобразуется в нужный для SYNTHMAG формат путем расчета полной зеемановской структуры линии по полученным из VALD квантовым числам и факторам Ланде обоих уровней.

Рис. 1.8: Геометрия однородного магнитного поля по отношению к наблюдателю при расчетах синтетического спектра с помощью SYNTHMAG.

1.3.3. Сравнение с наблюдениями

Сравнение синтетических спектров с наблюдениями проводится по программе ВІМАG, написанной О. Кочуховым с помощью интерактивного пакета графических программ IDL. Наблюдаемые и теоретические спектры выводятся на экран монитора; теоретический спектр сворачивается с инструментальным профилем, с профилем вращения. Лучевая скорость звезды определяется по сдвигу наблюдаемого спектра по отношению к теоретическому до совпадения с последним. Также на экран выводятся положения и относительные глубины спектральных линий. По этим глубинам можно оценить вклад отдельных линий в бленду. На Рис. 1.9 показан пример сравнения наблюдаемого участка спектра магнитной пекулярной звезды HD 144897, $\langle B \rangle = 8.8$ кГс (заполненные кружки), с синтетическим спектром, рассчитанным по программе SYNTHMAG.

Рис. 1.9: Пример расчета синтетического спектра для пекулярной звезды HD 144897 с магнитным полем 8.8 кГс по программе SYNTHMAG. Наблюдения показаны заполненными кружками. Зеемановская структура большинства линий хорошо описывается в предположении однородного поля.

1.3.4. Программы стратификационного анализа химического состава

Программа ddaFIT

Для анализа неоднородного распределения элемента по глубине атмосферы звезды была написана специальная программа определения градиентов химического состава в атмосфере пекулярных звезд - ddaFIT (depth dependent abundance fitting) (Ryabchikova et al., 2005a). Программа написана на языке IDL O. Кочуховым и оттестирована на спектрах нормальных и пекулярных звезд автором диссертации. Согласно диффузионным расчетам Бабеля (Babel, 1992) теоретическое распределение элемента в атмосфере звезды может быть представлено ступенчатой функцией. При такой аппроксимации оно описывается 4-мя параметрами: содержание элемента в верхних слоях атмосферы, в нижних слоях атмосферы, положение скачка содержания в атмосфере и ширина переходной зоны меж-

44

Рис. 1.10: Схема аппроксимации диффузионных расчетов Са (Babel, 1992) ступенчатой функцией. Расчеты показаны сплошной линией, аппроксимация - штриховой линией.

ду содержаниями в верхних и нижних слоях атмосферы звезды. Схема аппроксимации диффузионных расчетов представлена на Рис. 1.10.

Рис. 1.11: Расчитанное по программе ddaFIT распределение Fe в атмосфере Ap звезды HD144897 (левая панель). На правой панели приведено сравнение наблюдаемых профилей линий Fe (звездочки) с рассчитанными с однородным содержанием Fe (красная штриховая линия) и с распределением, показанным слева (синяя сплошная линия).

Все 4 параметра оптимизируются одновременно методом наименьших квадратов, минимизируя стандартное отклонение расчетных от наблюдаемых профилей спектральных линий. Минимизация производится методом Левенберга-Маркварта (Press et al., 1986). Количество используемых линий неограничено. Программа расчитывает профиль распределения для одного элемента, но учитывает возможное блендирование линиями других элементов либо с однородным содержанием, либо с предварительно рассчитанной для них стратификаций. Список линий задается в формате выдачи запроса 'extract stellar' из базы VALD. Программа ddaFIT работает с обеими версиями программ расчета синтетического спектра SYNTH3 и SYNTHMAG, поэтому стратификация определяется в атмосферах звезд с любыми величинами магнитного поля. Пример результатов работы ddaFIT показан на Puc. 1.11, где на левой панели приведено распределение Fe в атмосфере HD 144897, а на правой панели – сравнение наблюдаемых и теоретических профилей в случае однородного и ступенчатого распределения Fe.

Программа VIP

Ступенчатая функция, конечно, является упрощенным вариантом аппроксимации реального распределения элемента, поэтому О.Кочуховым и В. Цымбалом была написана программа VIP – Vertical Inversion Procedure, (Kochukhov et al., 2006), которая напрямую восстанавливает распределение элемента по наблюдаемым профилям линий. Поскольку восстановление распределения элемента по профилям линий относится к классу некорректных задач, то использовалась регуляризация методом Тихонова (Tikhonov & Arsenin, 1977). Как и для ddaFIT в качестве алгоритма минимизации применялся метод Левенберга-Маркварта (Press et al., 1986). Программа VIP была применена к стратификационному анализу одной из звезд, HD 133792 (см. Главу III). Сравнение результатов, полученных с использованием VIP и ddaFIT показало, что полученные распределения отличаются незначительно (см. Рис., 1.12), поэтому при массовых исследованиях страти-

Рис. 1.12: Сравнение распределений различных элементов в атмосферах нескольких Ар звезд, полученных по программе VIP (черные точки) и по программе ddaFIT (синяя сплошная линия). Содержание элемента в атмосфере Солнца показано красной штриховой линиейю

фикации применялась программа ddaFIT.

1.4. Выводы

В первой главе диссертации дано описание современных средств (данные по атомным параметрам спектральных линий) и методов, необходимых для детального анализа атмосфер магнитных пекулярных звезд по спектрам высокого разрешения.

Анализ химического состава атмосфер Ар звезд показал, что содержание аномальных элементов на порядки превышает содержание этих же элементов в атмосфере Солнца. Разумеется, эти аномалии не относятся к химическому составу звезды в целом, иначе ее глобальные характеристики не соответствовали бы звездам главной последовательности. Они локализованы только в очень небольшой части звезды – звездной атмосфере. Michaud (1970) рассмотрел процесс создания химических аномалий в звездных атмосферах, устойчивых по отношению к турбулентным движениям, в котором происходит диффузия элемента под совокупным действием гравитационного осаждения и радиационного ускорения. В зависимости от преобладания одного из процессов химический элемент может 'тонуть' вглубь со дна конвективной зоны (наилучший пример – гелий) или всплывать и накапливаться в атмосфере. Конвективная зона (например, зона HII), выполняет роль резервуара, обеспечивающего накопление элемента в верхних радиационных слоях атмосферы. Michaud et al. (1976) рассчитали диффузию химических элементов в оболочках звезд с массами от одной до пяти солнечных масс. Под оболочками здесь подразумеваются слои от фотосферы и глубже. Эти первые приблизительные расчеты показали, что некоторые элементы, Mg, Ca, должны иметь дефицит содержания в звездах с $1.2 - 2.0 M_{\odot}$, тогда как элементы железного пика должны наблюдаться в избытке, начиная с массы 1.4 M_{\odot} , что соответствует эффективной температуре 6500 К. Интересно, что само железо должно наблюдаться в дефиците вплоть до $T_{\rm eff}$ =9000 К. Авторы отмечали, что все расчеты для звезд с М $\geq 2.6 M_{\odot}$ подвержены очень большим ошибкам, поскольку для более горячих звезд с $T_{\rm eff}{>}10000~{\rm K}$ конвективная зона HII полностью исчезает, и расчеты начинаются с тех слоев, где диффузионное приближение для потока излучения, справедливое для больших оптических глубин, уже неприменимо. Необходимо учитывать детальную структуру атомов каждого элемента в первых стадиях ионизации и решать уравнение переноса для большого количества частот. Такие расчеты были проведены Бабелем (Babel 1992) для элементов Ca, Ti, Cr, Mn, Sr для эффективной температуры 8500 K, и впервые было

показано, что в атмосфере звезды диффузия приводит к резким градиентам в распределении содержания элементов с глубиной. В первом приближении это распределение можно представить ступенчатой функцией со скачком на глубине верхней границы конвективной зоны HII, которая по критерию Шварцшильда соответствует log $\tau_{5000} \sim -0.6$.

Наличие градиентов содержания должно повлиять на структуру атмосферы звезды через переменное поглощение в линиях, поэтому на рубеже веков начались работы по расчету самосогласованных диффузионных моделей, благодаря появлению программ расчета моделей атмосфер новой генерации, таких как PHOENIX (Hauschildt et al., 1997). Эти модели включали расчеты диффузии для элементов от H до La. Для пекулярных звезд такие расчеты были впервые выполнены Hui-Bon-Hoa et al. (2000) (голубые звезды горизонтальной ветви - BHB), а затем были сделаны расчеты и для химически пекулярных звезд главной последовательности (LeBlanc & Monin, 2004; LeBlanc et al., 2009; Alecian & Stift, 2010; Stift & Alecian, 2012). Получена возможность рассчитывать самосогласованные диффузионные модели для сравнения с наблюдениями. Однако, такие расчеты занимают много времени и проведены пока только для единичных значений эффективных температур.

До конца 90-х годов анализ химического состава пекулярных звезд проводился по моделям атмосфер с однородным распределением элементов по глубине и давал некоторые усредненные значения содержаний, которые, тем не менее, могут нести информацию о химической структуре атмосфер Ар звезд. В данной главе мы проанализировали совокупность результатов определения усредненного содержания элементов Si, Ca, Cr, Fe в атмосферах пекулярных звезд в широком диапазоне эффективных температур 6400 – 15000 K, сравнили их с содержаниями этих элементов в атмосферах нормальных звезд главной последовательности и с предсказаниями теории диффузии. Выборка именно этих элементов определялась тем фактом, что их линии наблюдаются в спектрах всех звезд программы. Кроме того, для этих элементов проведены наиболее детальные расчеты диффузионного процесса, благодаря хорошим атомным данным для нескольких стадий ионизации. Из редкоземельных элементов были детально проанализированы Pr и Nd, поскольку линии этих элементов, как будет показано далее, являются индикаторами пульсаций в атмосферах холодной части Ар звезд, которые получили название гоАр (rapidly oscillating) звезды.

49

2.1. Наблюдения и обработка спектров

Спектральные исследования Ар звезд проводились в рамках сотрудничества с Институтом астрономии Венского университета, начиная с середины 90-х годов прошлого столетия. Наблюдения были получены, в основном, сотрудниками Института астрономии Венского университета на различных обсерваториях, телескопах и с различными спектрографами. Список звезд представлен в Таблице 2.1 вместе с информацией о месте наблюдений и о разрешающей силе спектрографа $R = \lambda/\Delta\lambda$. Высокая разрешающая сила является одним из главных требований при проведении спектральных исследований магнитных пекулярных звезд, поскольку они, как правило, являются медленными ротаторами, и линии в их спектрах очень узкие. Кроме того, аномальное содержание химических элементов приводит к значительному увеличению числа спектральных линий, усиливая блендирование (Рис. 2.1).

Обработка спектров проводилась соавторами и описана в публикациях, ссылки на которых даны в Таблице 2.1. Обработка включала стандартные процедуры: вычитание темнового тока и фона неба (если необходимо), удаление космических частиц, деление на плоское поле, калибровка по длинам волн. Для эшельных спектров проводилась двумерная калибровка по длинам волн и экстракция отдельных порядков, которые затем сшивались в одномерный спектр. Для большинства спектров нормировка к уровню непрерывного спектра проводилась либо корректировалась автором диссертации.

2.2. Определение параметров модели звездной атмосферы и оценка ошибок

Чтобы определять химический состав атмосферы звезды по наблюдаемому спектру, необходимо иметь модель атмосферы, которая определяется эффективной температурой, эффективным ускорением силы тяжести и металличностью. Металличность определяется следующим образом:

$$Z_{\text{star}} = \frac{\sum_{a \ge 3} m_a 10^{\log(N_a/N_{tot})}}{\sum_{a > 1} m_a 10^{\log(N_a/N_{tot})}},$$
(2.1)

где a – атомный номер элемента с массой m_a , а $\log(N_a/N_{tot})$ есть логарифм отношения числа атомов данного элемента к числу атомов всех элементов. Обычно металличность выражают в логарифмическом виде по отношению к содержанию элементов в атмосфере

Таблица 2.1: Список звезд, для которых исследовался химический состав, с указанием деталей спектральных наблюдений.

HD	Оборна	Ofcoppo	Толоскон	Сноктрограф	Розрония	Социнко
ШD	чение	тория	TENECKOII	ΟΠΕΚΤΡΟΓΡΑΦ	т азреша- ющая сила	Осылка
	Tenne	тория			ющая снята	
		Μ	[агнитные химі	ически пекулярн	ые звезды	
	~	-				
128898	α Cir	ESO	1.5 м	ECHELEC	30 000	Kupka et al. (1996)
		ESO	3.6 м	CASPEC	30 000	
		ESO	3.6 м	CES(Reticon)	60 000	
		ESO	3.0 M	CES(CCD)	85 000	
0.4710	DO E.:	ESO CEUT	8.2 M VL1	UVES Detion	80 000	Kocnuknov et al. $(2009b)$
24712	DO Eri	CFHT V: AO	3.0 M	Reticon	50 000	Ryabchikova et al. $(1997b)$
20579		KPAO ESO	2.0 M 31III		30 000	Ряочикова и др. (2001) Duch chilterre et al. (2004)
29070	. Fee	ESO	3.0 M	CAT+CES	122 000	Ryadchikova et al. (2004)
201001	γĿqu	ESU DAO	0.0 M 1.00 M	CAI+CES Poticon	122 000	Ryabcilikova et al. (1997a)
		OHP	1.22 M 1.52 M	AURELIE	15,000	
		KnAO	2.6 M 3TH	CCD	35,000	Рабникова и пр. (2001)
10221	43 Cas	CAO	<u>2.0 м 01ш</u> 6 м	NES	45000	Глагодевский и др. (2001)
75445	40 Oas	ESO	36 M	CAT+CES	122 000	$B_{\rm vabchikova et al}$ (2004)
101065	V816 Cen	ESO	3.5 M NTT	Multi-mode	80,000	Cowley et al. (2000)
110066	AX CVn	KnAO	2.6 м ЗТШ	CCD	35,000	Byabchikova et al. (2000)
116114		ESO	2.6 м отш 3.6 м	CAT+CES	122,000	Ryabchikova et al. (2004)
110111		SAAO	1.9 м	GIRAFFE	37 000	regaseminova ev al. (2001)
122970	PP Vir	McDon	2.7 м	TS	56 000	Byabchikova et al. (2000)
18610	11 11	SAAO	1.9 м	GIRAFFE	37000	Ryabchikova et al. (2004)
133792		ESO	8.2 м VLT	UVES	80,000	Kochukhov et al. (2006)
212385	BK Gru	SÃÃO	1.9 м	GIRAFFE	37000	Ryabchikova et al. (2004)
137909	β CrB	CFHT	3.6 м	Gecko	115 000	Ryabchikova et al. (2004)
	<i>p</i> = = = =	CFHT	3.6 м	Gecko	60 000	
		KpAO	2.6 м ЗТШ	CCD	35000	
137949	33 Lib	SÂAO	1.9 м	GIRAFFE	37000	Ryabchikova et al. (2004)
		KpAO	2.6 м ЗТШ	CCD	35000	
144897		ESO	8.2 м VLT	UVES	80000	Ryabchikova et al. (2006b)
166473	V694 CrA	$_{\rm ESO}$	3.5 м NTT	Multi-mode	25000	Gelbmann et al. (2000)
		$_{\rm ESO}$	3.6 м	CAT+CES	122000	
176232	10 Aql	McDon	2.7 м	TS	56000	Ryabchikova et al.(2000)
100011	111001 1 1	KpAO	2.6 м ЗТШ	CCD	35000	
188041	V1291 Aql	KpAO	2.6 м ЗТШ	CCD	35 000	Ryabchikova et al. (2004)
183806	PW Tel	SAAO	1.9 м	GIRAFFE	37 000	Ryabchikova et al. (2004)
204411		La Palma	3.58 м TNG	SARG	164 000	Ryabchikova et al. (2005)
115226	Trace G	ESO	3.6 м	HARPS	115 000	Kochukhov et al. (2008)
12098	V988 Cas	CFHT	3.6 м	Gecko	115 000	Ryabchikova et al. (2004)
60435	V409 Car	ESO	3.6 M	CAT+CES	122 000	Ryabchikova et al. (2004)
108662	17 Com	KpAO K AO	2.6 м ЗТШ	CCD	35 000	Саванов и др. (1996)
108945	21 Com	KpAO DGO	2.6 м 31Ш	CCD	35 000	Саванов и др. (1996)
177765	10 C	ESO	8.2 M VLT	UVES	110 000	Alentiev et al. (2012)
62140	49 Cam	CAO	1.0 м 1.0	CCD	36 000	Рябчикова и др. (2001)
42659	UV Lep	CAO	1.0 м	CCD	36 000	Ряочикова и др. (2001)
			Норм	альные звезды		
17081	π Cet	CFHT	36м	ESPaDonS	65 000	Fossati et al. (2009)
32115	<i>n</i> 000	McDon	2.7 м	TS	60 000	Fossati et al. (2000)
37594		McDon	2.7 M	ŤŠ	60 000	Fossati et al. (2011)
49933		ESO	36м	HARPS	115 000	\mathbf{R} Ryabchikova et al. (2009)
209459	21 Per	La Palma	3.55 M NOT	FIES	65 000	Fossati et al. (2009)
200400	21108	CFHT	3.6 м	Gecko	120000	1000001 00 00. (2000)
				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		

Солнца, т.е. M=+1, например, означает, что содержание всех элементов кроме водорода и гелия в атмосфере звезды на порядок превышает солнечное.

Для всех звезд первоначально параметры атмосферы определялись по наблюдаемым фотометрическим индексам в среднеполосной системе Стремгрена (каталог Hauck & Mermilliod, 1998) и в Женевской фотометрической системе (каталог Rufener, 1989 и дополнительная база данных Женевской обсерватории Burki et al., 2005), исправленным за

Рис. 2.1: Сравнение спектров нормальной и химически пекулярной звезды с одинаковыми эффективными температурами $T_{\rm eff}$ =7250 K и близкими по значению ускорениями силы тяжести.

межзвездное покраснение. Для системы Стремгрена использовались калибровки Мооп & Dworetsky (1985), Napiwotzki et al. (1993) и Balona (1994). Для определения эффективной температуры T_{eff} по индексам Женевской фотометрической системы были использованы калибровки Künzli et al. (1997) с поправками за аномальное распределение потока в Ap звездах (Hauck & Künzli, 1996). Все калибровки были сведены в программный пакет **TempLogG** (Kaiser, 2006), с помощью которого определялись параметры атмосферы. В качестве примера приведем результаты определения температуры для звезды HD 24172 (DO Eri). В системе Стремгрена звезда имеет следующие индексы: (b-y)=0.186, m1=0.202, c1=0.653, β =2.744. В Женевской фотометрической системе она имеет следующие величины: U=1.381, V=0.572, B1=0.978, B2=1.393, V1=1.286, G=1.688. В Таблице 2.2 приведены значения T_{eff} , log g и M, полученные по различным калибровкам, а также средние значения параметров с соответствующей дисперсией.

Таблица 2.2: Параметры атмосферы звезды HD 24172 (DO Eri), полученные в результате калибровки фотометрических индексов в системе Стремгрена и в Женевской фотометрической системе с помощью программы TempLogG. В последней строке приведены средние величины. Среднеквадратичная ошибка (последние знаки) указана в скобках.

$T_{\rm eff}$	$\log g$	М	Калибровка				
7231	4.20	+0.23	Moon & Dworetsky (1985)				
7147	4.20	+0.23	Napiwotzki et al. (1993)				
7342	4.16	+0.23	Balona (1994)				
7185	4.54		Künzli et al. (1997)				
$< T_{\text{eff}} > = 7225(85), < \log g > = 4.28(18)$							

Для большинства звезд параметры атмосферы, определенные по фотометрии, были скорректированы по профилям водородных линий Н α и Н β и/или по наблюдаемому распределению энергии в спектре звезды. Распределения энергии были взяты из каталога Adelman et al. (1989). На Рис. 2.2 показано сравнение наблюдаемого распределения энергии в спектре звезды HD 176232 (10 Aql) с теоретическими расчетами, выполненными для двух моделей атмосфер с параметрами 7760g41p00 (получены по фотометрии в системе Стремгрена с калибровками Moon & Dworetsky (1985)) и с параметрами 7550g40p00, окончательно принятыми для анализа химического состава. Аббревиатура 7550g40p00, которая будет использоваться в дальнейшем, означает модель атмосферы с $T_{\rm eff}$ =7550 K, log g=4.0 и металличностью М=0. Очевидно, что различие в температуре в 200 K и в логарифме ускорения силы тяжести в 0.1 deх можно легко обнаружить по спектрофотометрии. Однако, данные спектрофотометрии есть не для всех звезд. Кроме того, хотя большинство звезд программы – довольно яркие объекты, неопределенность в межзвездном покраснении может внести существенную ошибку в определение эффективной температуры (см. Рис. 2.3).

Приведенные примеры показывают, что ошибка определения эффективной температуры составляет $\pm 100-200$ К. Типичная ошибка определения ускорения силы тяжести log q составляет $\pm 0.1-0.2$ dex.

Параметры атмосфер, с которыми были рассчитаны соответствующие модели для анализа химического состава, приведены в Таблице 2.3. Для большинства звезд модели

Рис. 2.2: Сравнение наблюдаемого распределения энергии в спектре Ар звезды 10 Aql (крестики) с теоретическим, рассчитанным для модели 7760g41p00 (точечная линия) и модели 7550g40p00 (сплошная линия).

рассчитывались по программе Куруца ATLAS9 (Kurucz, 1993a).

Для нескольких (HD 101065, HD 128898) звезд параметры атмосфер были уточнены с учетом неоднородного распределения химических элементов по глубине путем сравнения с наблюдаемым распределением энергии в спектре (см. пример в Разделе 4.2). В этом случае расчет моделей атмосфер проводился по программе LLmodels.

Для сравнения с Ар звездами мы также провели наблюдения и анализ химического состава нескольких нормальных звезд с узкими спектральными линиями. Эти звезды находятся в том же интервале температур, что и пекулярные звезды программы. Несмотря на отличное качество наблюдательного материала, оценка точности приводит к таким же ошибкам в $T_{\rm eff}$ и log g, что и для пекулярных звезд, хотя точность определения содержа-

Таблица	2.3:	Параметры	атмосфер	исследуемых	звезд.	В	скобках	приведены	ошибки	В
последни	х зн	аках параме	тров.							

HD	$T_{\rm eff}$	$\log g$	$\langle B \rangle$	$v_{\rm e} \sin i$	Ссылка					
Магнитные химически пекулярные звезды										
101065	6400(150)	4.2(2)	$2.3(4)^1$	$3.5(5)^1$	Shulyak et al. (2010)					
122970	6930(100)	4.11(10)	2.2(2)	5.0(5)	Ryabchikova et al.(2000)					
24712	7250(150)	4.3(1)	2.7(1.5)	5.6(2.3)	Ryabchikova et al. (1997b)					
128898	7500(130)	4.1(15)	~ 1.5	12.5(5)	Kochukhov et al. (2009)					
12098	7550(200)	4.2(2)	≤ 6.5	10(2)	Ryabchikova et al. (2004)					
137949	7550(200)	4.3(2)	5.0(2)	0	Ryabchikova et al. (2004)					
176232	7550(150)	4.0(1)	$1.5(1)^2$	$2.0(5)^2$	Ryabchikova et al.(2000)					
115226	7650	4.0		18-30	Kochukhov et al. (2008)					
75445	7700(200)	4.3(1)	2.9(1)	$<\!2$	Ryabchikova et al. (2004)					
166473	7700(250)	4.2(2)	8.6(2)	0	Gelbmann et al. (2000)					
201601	7700(150)	4.2(2)	4.0(2)	0	Ryabchikova et al.(1997a)					
29578	7800(200)	4.2	5.6(2)	2.5	Ryabchikova et al. (2004)					
62140	$7900(330)^3$	4.3	4.5	$23(3)^3$	Рябчикова и др. (2001)					
116114	8000(200)	4.1(1)	6.2(2)	3(1)	Ryabchikova et al. (2004)					
137909	8000(200)	4.3(1)	5.4(1)	$3.5(1.5)^3$	Ryabchikova et al. (2004)					
177765	8000(150)	3.8(2)	3.55(15)	2.7(5)	Alentiev et al. (2012)					
18610	8100(150)	4.0(1)	$5.7(2)^4$	$5(1)^4$	Ryabchikova et al. (2004)					
42659	8100(200)	4.2(1)		23(1)	Рябчикова и др. (2001)					
60435	8100(200)	4.2(1)	$<\!\!2.0$	12(1)	Ryabchikova et al. (2004)					
204411	8400(200)	3.5(1)	<1	5.4(5)	Ryabchikova et al.(2005)					
188041	8500(200)	4.5(2)	$3.6(2)^5$	2(1)	Рябчикова и др. (2001)					
108945	8800(200)	4.0		50(5)	Саванов и др. (1996)					
110066	9000(200)	4.3(2)	3.6	9(1)	Ryabchikova et al. (2001)					
212385	9200(200)	4.4(2)		32(2)	Ryabchikova et al. (2004)					
133792	9400(200)	3.7(1)	1.1(1)	0	Kochukhov et al.(2006)					
183806	10070(200)	3.68(20)		28(2)	Ryabchikova et al. (2004)					
108662	10300(200)	4.3(1)		19(2)	Саванов и др. (1996)					
144897	11250(150)	4.0(2)	8.8(1)	3.0(5)	Ryabchikova et al. (2006b)					
10221	11900(200)	3.9(1)		27(2)	Глаголевский и др. (2005)					
	I	H	[ормальны	е звезды						
49933	6500(50)	4.0(1)		10.0(5)	Ryabchikova et al. (2009)					
37594	7150(150)	4.2(1)		17(1)	Fossati et al. (2011)					
32115	7250(100)	4.2(1)		8.3(5)	Fossati et al. (2011)					
209459	10400(200)	3.55(10)		3.76(35)	Fossati et al. (2009)					
17081	12800(200)	3.75(10)		20.2(9)	Fossati et al. (2009)					

¹Cowley et al. (2000)

 2 Kochukhov et al. (2002a);

 3 Wade (1997);

 4 Stütz et al. (2003);

 $^5\mathrm{Mathys}$ & Lanz (1992)

Рис. 2.3: Срвнение наблюдаемого и теоретического распределения энергии в спектре Ар звезды HD204411. Наблюдаемые значения, исправленные за межзвездное покраснение E(B - V)=0.014, показаны заполненными кружками, открытые кружки представляют наблюдения, исправленное за межзвездное покраснение E(B - V)=0.048. Наилучшее согласие с наблюдениями в этих двух случаях представлено теоретическими расчетами с моделью атмосферы 8400g35 (сплошная линия) и с моделью атмосферы 8700g34 (штриховая линия).

ния основных элементов в атмосферах нормальных звезд гораздо выше (см. Раздел 2.3 и Таблицу А1.1 Приложения № 1).

2.2.1. Определение скорости вращения

Скорость вращения звезды оценивалась путем подгонки теоретических профилей спектральных линий к наблюдаемым. Теоретический (синтетический) спектр рассчитывался с заданной моделью атмосферы и с содержанием элемента, соответствующем наблюдаемой интенсивности линии по программе SYNTH3 или SYNTHMAG. Сначала синтетический спектр уширялся введением инструментального уширения, которое аппроксимируется гауссианой с полушириной $\Delta \lambda = \lambda/R$, где R - разрешающая сила. Дополнительное уширение интерпретировалось как эффект вращения звезды. Хотя в звездах с температурой ниже 8000 К дополнительное уширение может быть обусловлено конвективными движениями (макротурбуленция), в Ар звездах это не наблюдается из-за стабилизирующего эффекта магнитного поля. Нужно иметь в виду, что измеренная по профилям спектральных линий проекция скорости вращения на луч зрения $v_e \sin i$ может быть как заниженной, так и завышенной по отношению к реальной скорости. Поскольку поверхность Ар звезд химически неоднородна, элементы могут концентрироваться в пятнах на поверхности. В этом случае спектральная линия будет уже, и для аппроксимации её профиля формально потребуется меньшая скорость вращения. С другой стороны, зеемановское расщепление линии в магнитном поле уширяет линию, что может привести к завышенным величинам скорости вращения. К счастью, магнитное уширение - дифференциальный эффект, зависящий от величины фактора Ланде, определяющего магнитное расщепление. Поэтому мы использовали этот эффект для оценки магнитного поля в случае малых напряженностей магнитных полей.

2.2.2. Определение магнитного поля и учет влияния магнитной интенсификации

Спектральная линия, формирующаяся в среде с магнитным полем, расщепляется на компоненты, количество которых определяется квантовыми числами перехода, а расстояние между компонентами определяется модулем магнитного поля и комбинацией факторов Ланде уровней gи магнитных квантовых чисел M. В магнитном поле \vec{B} уровень с главным квантовым числом J расщепляется на 2J+1 подуровней с M = -J, ... + J, а величина расщепления $\Delta E \sim |B| \times g$. В случае LS-связи фактор Ланде уровня выражается через квантовые числа J, L, S:

$$g = \frac{3}{2} + \frac{S(S+1) - L(L+1)}{2J(J+1)}$$
(2.2)

Смещение компонентов определяется как:

$$\Delta \lambda = 4.67 \times 10^{-13} \lambda^2 |B| \boldsymbol{g}_{\text{eff}}$$
(2.3)

где $g_{\text{eff}} = \frac{1}{2}(g_i + g_j) + \frac{1}{4}(g_i - g_j)(J_i(J_i + 1) - J_j(J_j + 1)).$ $\Delta \lambda$ и λ выражены в Å, модуль поля |B| в гауссах. Пример зеемановского расщепления в неполяризованном спектре показан на

Рис. 2.4: Псевдотриплетное расщепление спектральных линий в спектре звезды HD 144897, имеющей модуль магнитного поля $\langle B_z \rangle = 8.8$ кГс. Наблюдения показаны открытыми ромбами. Сплошной линий показан синтетический спектр, рассчитанный с учетом магнитного поля, штриховая линия представляет синтетический спектр, рассчитанный с тем же содержанием элементов, но в немагнитной атмосфере.

Рис. 2.4. Величина $\langle B \rangle$ есть усредненный по видимой поверхности звезды модуль вектора магнитного поля.

Эффективный фактор Ланде g_{eff} или z характеризует смещение центра тяжести компонентов круговой ($\pm \sigma$ -компоненты) поляризации. Если звезда медленно вращается и имеет узкие линии, то часть из них с большими эффективными факторами Ланде показывает частичное или полной расщепление в зависимости от величины поля. Самой удобной линией для оценки модуля магнитного поля по неполяризационным наблюдениям является линия Fe II λ 6149.24 Å. Эта линия расщепляется на два π и два σ -компонента с одинаковым расстоянием между ними. Это означает, что при любом значении поля мы всегда имеем 2 компонента спектральной линии. Фактор Ланде этой линии g=1.35. Измеряя расстояние между компонентами и беря половину, мы вычисляем модуль магнитного поля по формуле 2.3. На Рис. 2.5 приведен профиль этой линии в спектрах нескольких звезд нашей программы с различными магнитными полями.

Как видно из Рис. 2.5 линия Fe II λ 6149.24 Å расщепляется при величине магнитного поля около 3 кГс. В спектрах магнитных звезд есть другие линии с большими факторами Ланде, но с более сложной зеемановской конфигурацией. По этим линиям нельзя измерять магнитное поле путем измерения расстояния между компонентами, однако можно получить оценку величины поля путем подгонки наблюдаемого спектра и синтетического, рассчитанного по программе SYNTHMAG.

При модуле магнитного поля $\langle B \rangle \leq 1$ кГс даже при самом высоком разрешении и в практически невращающихся звездах магнитное расщепление уже отсутствует, однако, как было упомянуто выше, спектральная линия может иметь дополнительное уширение, вызванное магнитным полем. Это уширение может быть измерено относительно магнитонечувствительной линии FeI λ 5434.52 Å, которая имеет g=0.01. На Рис. 2.6 приведены профили нескольких линий с различными факторами Ланде в спектре звезды HD 133792. Величина магнитного поля, оцененного по дифференциальному уширению путем расчета синтетического спектра по программе SYNTHMAG, составляет $\langle B \rangle = 1.1$ кГс.

В нормальных B-F звездах интенсивность спектральной линии зависит от параметра микротурбулентной скорости ξ_t , величина которой составляет 2 – 2.5 км с⁻¹ в интервале эффективных температур 6500 – 9000 К и уменьшается в обе стороны изменения температуры. Этот параметр входит в доплеровское уширение спектральной линии вместе с тепловым уширением:

$$\Delta \nu_{\rm D} = \nu_0 {\rm v/c}; ({\rm v}^2 = 2{\rm k}T/m + \xi_t^2)$$
(2.4)

При правильном подборе параметра микротурбулентной скорости содержание элемента, определенное по индивидуальным линиям, не зависит от интенсивности (эквивалентной ширины) линии. Для анализа выбирают линии в диапазоне эквивалентных ширин 5 – 120 mÅ. В пекулярных звездах из-за дополнительного уширения, вызванного магнитным полем и разного для индивидуальных линий, такой метод неприменим. Вообще говоря, присутствие в атмосфере даже слабого магнитного поля должно подавлять всякие конвективные процессы, ответственные за микротурбуленцию. Это подтверждается исследованиями химического состава Ар звезд. В тех случаях, когда поле мало и линии не получают значительного зеемановсого уширения, стандндартная процедура определения

Рис. 2.5: Наблюдаемое расщепление линии Fe II λ 6149.24 Åв спектрах Ap звезд с различными магнитными полями. Наблюдения проведены со спектрографом UVES, разрешающая сила R=80 000. Вертикальная линия показывает положение центра линии в отсутствии магнитного поля.

Рис. 2.6: Магнитное уширение спектральных линий в Ар звездах с очень медленным вращением и слабым магнитным полем $\langle B \rangle \sim 1 \mathrm{k}\Gamma \mathrm{c}$. Наблюдения звезды HD 133792 показаны точками, синтетический спектр без магнитного поля показан красной штриховой линией, синтетический спектр в магнитной атмосфере показан сплошной синей линией. Длины волн и значения факторов Ланде приведены в верхней части рисунка.

микротурбулентной скорости дает значения, близкие к нулю (Ryabchikova et al., 2005а; Kochukhov et al., 2006). При магнитных полях ~2 – 4 кГс и при относительно небольпом спектральном разрешении спектральные линии не показывают расцепления, но их интенсивность увеличивается (магнитная интенсификация линий). Это происходит в случае, когда величина магнитного расцепления превосходит тепловое уширение. Для звезд с эффективной температурой ~8000 К тепловая скорость для атомов железа чуть больше 1 км с⁻¹. Соответственно, поле должно превышать 1.3 кГс, чтобы влиять на интенсивность линии с длиний волны 5000 Å и со средним эффективным фактором Ланде g=1.2. При анализе спектров таких звезд без большой потери точности можно работать с эквивалентными ширинами, вводя параметр псевдомикротурбуленции v_{magn}, выраженный как v_{magn}= $1.4 \times 10^{-7}\lambda |B|g_{eff}$. Такой подход реализован в модифицированной программе WIDTHmf (Раздел 1.3.1), которая позволяет определять содержания элементов по эквивалентным ширинам в атмосферах магнитных пекулярных звезд.

Для звезд с магнитными полями больше 4 –5 кГс содержание элементов определялось для каждой линии путем подгонки синтетического спектра, рассчитанного по программе SYNTHMAG, к наблюдаемому спектру. Данные по индивидуальным линиям затем усреднялись, и вычислялась среднеквадратичная ошибка (стандартное отклонение) одного измерения. Атомные параметры спектральных линий – силы осцилляторов, энергии

		Содержание элемента					
$\lambda(m \AA)$	$E_i(eV)$	$\log gf$	$oldsymbol{g}_{\mathrm{eff}}$	$W_{\lambda},\mathrm{m\AA}$	8.6 кГс	Без	поля
					$\xi_t = 0$	$\xi_t = 1$	$\xi_t = 2$
5836.32	0.998	-1.198	1.190	29.0	-8.40	-8.25	-8.36
5938.97	0.933	-1.342	0.810	15.1	-8.60	-8.57	-8.62
5963.22	1.517	-1.194	1.140	35.8	-8.00	-7.69	-7.84
6325.60	1.446	-1.195	0.750	26.0	-8.30	-8.01	-8.10
6426.62	1.746	-0.559	1.510	44.0	-8.00	-7.96	-8.18
6472.35	1.226	-1.308	1.380	28.0	-8.20	-7.99	-8.10
6601.83	1.493	-0.773	1.940	50.4	-8.25	-7.78	-8.07
6604.53	1.708	-0.237	0.680	127.3	-8.10	-6.32	-7.18
6630.61	1.517	-1.208	0.990	26.6	-8.20	-7.94	-8.04
6632.27	1.670	-0.637	1.490	51.6	-8.20	-7.75	-8.05
6687.79	1.708	-0.972	0.500	54.0	-7.90	-7.33	-7.65
6693.55	1.687	-0.373	1.500	53.8	-8.00	-7.95	-8.28
6731.81	1.166	-0.521	0.970	65.5	-8.65	-7.90	-8.36
6741.49	0.998	-0.984	1.260	91.5	-8.15	-6.87	-7.62
7139.33	1.890	-0.922	0.400	19.0	-8.30	-8.18	-8.24
7143.96	0.998	-1.063	1.500	30.9	-8.60	-8.40	-8.52
7560.04	1.687	-1.010	1.900	30.9	-8.15	-7.93	-8.05
		ержание:	-8.25	-7.81	-8.07		
				σ :	0.24	0.53	0.34

Таблица 2.4: Содержание Sm по индивидуальным линиям Sm II в атмосфере HD 166473 для разных моделей магнитного магнитного уширения.

возбуждения, статистические веса уровней, факторы Ланде, параметры радиативного, штарковского и вандерваальсовского уширений – выбирались из базы данных VALD. Пренебрежение эффектами магнитного поля при анализе химического состава звезд с большими магнитными полями хорошо проиллюстрировано для звезды HD 166473 ($\langle B \rangle = 8.6 \text{ кГс}$) (Gelbmann et al., 2000) и показано в Таблице 2.4.

В Таблице 2.4 и во всех последующих таблицах содержание элемента представлено как среднее значение логарифма отношения числа атомов данного элемента к общему числу атомов всех элементов $\log(N_{\rm el}/N_{\rm tot})$. Здесь и везде далее σ есть среднеквадратичная ошибка одного измерения.

2.3. Химический состав атмосфер Ар звезд в интервале температур 6400–12000 К

Результаты измерений содержания элементов от С до U в атмосферах 28 магнитных химически пекулярных звезд представлены в Таблице А1.1 Приложения № 1. В скобках приведена стандартная ошибка (два десятичных знака). В последних шести колонках представлены содержания элементов в атмосферах пяти нормальных звезд и в атмосфере Солнца. Рекомендованные данные для солнечной фотосферы взяты из paботы Lodders (2010). Наиболее полно представлен химический состав атмосферы самой холодной Ар звезды – звезды Пшибыльского (HD 101065), где удалось измерить (оценить) содержания 52 элементов периодической системы Менделеева от углерода до урана (в Таблице А1.1 Приложения №1 приведены содержания 49 элементов). Содержания тория и урана удалось определить в атмосферах двух других холодных Ар звезд. Также достаточно полно представлен химический состав одной из самых горячих звезд программы, HD 144897 (28 элементов, включая все редкоземельные элементы). Кроме температуры обе звезды отличаются величиной напряженности магнитного поля: $\langle B \rangle = 2.3$ кГс (HD 101065) и $\langle B \rangle = 8.8 \ \kappa \Gamma c \ (HD \ 144897)$. Чтобы получить общее представление о характере наблюдаемых аномалий в атмосферах Ар звезд, мы сравнили относительные содержания (по отношению к солнечному содержанию элементов) в атмосферах этих двух звезд, расположенных вблизи границ температурного диапазона, рассмотренного в диссертации. Сравнение содержаний показано на Рис. 2.7. Основные различия наблюдаются в содержаниях четных элементов железного пика: Ti, Cr, Fe, и в содержаниях редкоземельных элементов (REE). Содержания Ті, Сг, Fe на порядок и более выше солнечного в горячей звезде, тогда как в HD 101065 эти элементы имеют либо солнечное содержание (Cr), либо находятся в дефиците (Ті и, особенно, Fe). Что касается REE, то основное различие состоит в наличии REE-аномалий в атмосфере холодной звезды HD 101065 и в отсутствии этих аномалий (за исключением, может быть, Eu) в атмосфере горячей звезды HD 144897. Величина наблюдаемых избытков редкоземельных элементов сопоставима в обеих звездах. REE-аномалии определяются как различие больше, чем на порядок, содержаний редкоземельных элементов, полученных отдельно по линиям первых и вторых ионов.

Несмотря на то, что содержание редкоземельных элементов приблизительно одинаковое в атмосферах обеих звезд, влияние поглощения в линиях этих элементов на выходя-

Рис. 2.7: Сравнение относительных содержаний элементов (по отношению к солнечному содержанию) в атмосферах Ap звезд HD 101065 (6400g42, $\langle B \rangle = 2.3$ кГс) и HD 144897 (11250g40, $\langle B \rangle = 8.8$ кГс). Содержания, полученные по линиям нейтральных элементов, первых и вторых ионов, показаны заполненными кружками, открытыми кружками и звездочками, соответственно.

Рис. 2.8: Верхняя панель: Сравнение наблюдаемых потоков HD 101065 с теоретическими, рассчитанными для двух различных выборок линий редкоземельных элементов: данные из VALD2(VALD REE) и рассчитанные в Институте спектроскопии РАН (ISAN REE). Для сравнения показано распределение потока в спектре нормальной звезды HD 49933, имеющей близкие параметры атмосферы (черная сплошная линия).

Внизу показано распределение по длине волны и интенсивности спектральных линий нескольких редкоземельных элементов, которые вносят вклад в поглощение в атмосфере HD 101065. Построено по данным Института спектроскопии РАН. щий поток совершенно разное. В спектре горячей звезды, несмотря на большой избыток REE, линий первых и даже вторых ионов очень мало. В спектре преобладают линии ионизованных элементов железного пика. Хотя повышенное линейчатое поглощение влияет на распределение температуры в модели атмосферы и, следовательно, на выходящий поток, форма распределения потока с длиной волны существенно не меняется по сравнению с распределением потока в звезде с нормальным химическим составом, имеющей близкие параметры атмосферы. В атмосфере холодной звезды поглощение в линиях редкоземельных элементов при их содержаниях, полученных для HD 101065, играют ведущую роль в формировании потока в некоторых спектральных областях. На Рис. 2.8 показано сравнение наблюдаемых и теоретических потоков в HD 101065, рассчитанных с химическим составом из Таблицы А1.1 Приложения № 1. В нижней части показано распределение спектральных линий некотрых REE, вносящих вклад в поглощение более 1% от непрерывного спектра. Видно, что концентрация линий поглощения в спектральном диапазоне 3000-5000 Å, приводит к 'выеданию' потока в этом диапазоне. У HD 101065 бальмеровский скачок практически отсутствует, что делает невозможным оценку параметров атмосферы по фотометрическим индексам, прокалиброванным по нормальным звездам или даже пекулярным звездам, но с меньшими наблюдаемыми аномалиями химического состава. Рис. 2.8 показывает значение учета поглощения в линиях для анализа атмосфер химически пекулярных звезд.

2.3.1. Температурное поведение содержания элементов Si, Ca, Cr, Fe в атмосферах магнитных пекулярных звезд

Из Таблицы А1.1 Приложения № 1 были выбраны содержания 4-х элементов Si, Ca, Cr, Fe. Наши данные были дополнены данными из литературы для нормальных звезд (50), магнитных пекулярных Ap звезд (20) и пульсирующих магнитных пекулярных гоAp звезд (4), которые представляют наиболее холодную часть Ap звезд. Критерием отбора служила однородность методики определения химического состава, а также небольшая скорость вращения $v_e \sin i \le 50$ км с⁻¹. Например, содержания элементов в атмосферах нормальных звезд были взяты из серии работ группы Адельмана (см. ссылки в последнем столбце Таблицы А1.2 Приложения № 1), из работы Varenne & Monier (1999) и из работы Hill & Landstreet (1993). Сравнение результатов для одних и тех же звезд в этих работах показало согласие параметров моделей атмосфер и определяемых содержаний в пределах обычных ошибок анализа химического состава: ±150 K для эффективной температуры и ±0.15 dex для содержаний. Содержания элементов в атмосферах пекулярных звезд, в основном, взяты из наших собственных работ и из работ группы Адельмана. Для двух звезд HD 153882 (Ryabchikova et al., 1995) и α^2 CVn (HD 112413 (Kochukhov et al., 2002b) использовались средневзвешанные величины по картам распределения элемента по поверхности звезды. Во всех остальных случаях спектральная переменность, присущая многим пекулярным звездам, не учитывалась, поэтому часть разброса в содержаниях элементов может быть обусловлена этим фактом. Только пять из 35 Ар звезд не имеют измерений магнитного поля, причем две из них показывают спектральную и фотометрическую переменность, характерную для магнитных звезд. Сопоставление методов определения химического состава, используемых разными группами, приведено также в работе Ryabchikova et al. (2004a). Практически все работы по определению химического состава звездных атмосфер используют модели атмосфер, рассчитанные по программе ATLAS9 (Kurucz, 1993a). Наиболее важным фактором, влияющим на точность определения химического состава, являются атомные данные, главным образом, силы осцилляторов спектральных линий. Для рассматриваемых элементов Si, Ca, Cr, Fe в подавляющем большинстве работ использовались силы осцилляторов, включенные в Венскую базу атомных параметров спектральных линий VALD (Piskunov et al., 1995; Kupka et al., 1999; Ryabchikova et al., 1999b), поэтому эффект неоднородности атомных данных в нашей выборке содержаний химических элементов сведен к минимуму. В тех случаях, когда содержание элемента определялось по линиям в двух стадиях ионизации и количество линий было сопоставимо, мы использовали среднее значение по обеим стадиям. Если результаты различались более, чем на 0.3 dex, бралось содержание элемента по стадии ионизации с преобладающим количеством линий. Содержание Si, Ca, Cr, Fe в атмосферах всех звезд выборки представлены в Таблице A1.2 Приложения № 1: в первом столбце приведен НD номер звезды, а во втором - значение эффективной температуры. В последнем столбце дана ссылка на работу, из которой бралось содержание элементов. Величины ошибок содержаний в Таблице А1.2 не приведены, но для Ар звезд, где разброс наибольший, они будут показаны на соответствующих рисунках. Звезды, анализ химического состава которых составляет часть диссертации, выделены в Таблице А1.2 жирным шрифтом.

На Рис. 2.9 и Рис. 2.10 представлены содержания исследуемых элементов в зависимости от эффективной температуры звезд. Солнечное содержание этих элементов по-

Рис. 2.9: Распределение содержаний Si (левая панель) и Ca (правая панель) с температурой в звездах ГП спектрального класса A и B. Ар звезды обозначены черными сплошными кружками, нормальные звезды – звездочками.

казано горизонтальными линиями. В целом, содержания Si и Ca в Ap звездах хоть и показывают некоторую корреляцию с эффективной температурой (рост содержаний до $T_{\rm eff}$ =10000-12000 K, а затем уменьшение до практически солнечного значения), однако, встречаются достаточно большие отклонения, которые частично могут быть обусловлены неоднородным распределением Si по поверхности звезды. Одна из двух Ap звезд, HD 108662 (17 Com A), с наибольшим дефицитом Si является спектрально-переменной, и в зависимости от фазы наблюдений можно получать как избыток, так и дефицит Si (Caванов и др., 1996). У нормальных звезд содержание Si достаточно плотно группируется вокруг солнечного значения со средней величиной и дисперсией -4.51 \pm 0.16 и с отсутствием какой-либо температурной корреляции.

Са в среднем имеет солнечное содержание в нормальных звездах, хотя и с бо́льшим

Рис. 2.10: Распределение содержаний Cr (левая панель) и Fe (правая панель) с температурой в звездах ГП спектрального класса A и B. Ар звезды обозначены черными сплошными кружками, нормальные звезды – звездочками. Красные открытые квадраты показывают усредненное содержание элемента в теоретических самосогласованных диффузионных моделях звездных атмосфер.

разбросом, чем Si (-5.72±0.27). Отчасти это может быть обусловлено теми линиями, по которым определяется содержание. В более холодных звездах это линии Ca I a в более горячих звездах содержание выводится из единственной резонансной линии Ca II 3933 Å, которая может быть подвержена эффектам отклонения от термодинамического равновесия. У Ap звезд наблюдается рост содержания Ca с температурой с максимумом в районе 10000 K, и с последующим спадом до солнечного значения. Однако, несколько звезд выпадают из этой зависимости, причем причина отклонений не заключается в ошибках определения содержания. Эти случаи будут рассмотрены в следующем разделе.

Наиболее впечатляющим является температурное поведение содержаний Cr и Fe,

69

представленное на Рис. 2.10. В атмосферах Ар звезд содержание этих элементов быстро растет с ростом температуры от 6400 до 9000-10000 К, затем наступает спад содержания Сг до значений, на порядок превышающих солнечное содержание, тогда как содержание Fe остается примерно на уровне избытка +1.0 dex по сравнению с Солнцем. В максимуме содержания Сг и Fe почти совпадают, что и привело к классификации пекулярных звезд в этом диапазоне температур как Сг или SiCr звезды. Необходимо отметить, что если у самой холодной части Ар звезд (гоАр звезды) Fe может быть в дефиците, достигающем в самых крайних случаях порядка величины, Cr для этих же звезд имеет содержание близкое к солнечному. Темп роста содержания Cr с температурой превышает в 1.5 раза соответствующий темп роста Fe. Поведение содержаний этих элементов в атмосферах нормальных звезд представляет особый интерес. Температурная зависимость имеет максимум в районе тех же эффективных температур, что и для пекулярных звезд, с той разницей, что величина этого максимума на порядки меньше. Горячие нормальные звезды имеют содержания Cr и Fe чуть ниже, чем на Солнце.

2.3.2. Сравнение с предсказаниями диффузионной теории

Согласно диффузионным расчетам Michaud et al. (1976) и LeBlanc & Monin (2004) в диапазоне температур 6400-9500 К кремний должен иметь примерно солнечное содержание с возможным небольшим дефицитом. В Ар звездах при температурах выше 8300 К почти всегда наблюдается избыток кремния.

В целом можно сказать, что температурное поведение содержания Ca, хотя и соответствует предсказаниям теории диффузии (рост содержания с $T_{\rm eff}$ в диапазоне 6400-9500 K), однако само наблюдаемое содержание выше, чем предсказывает теория, согласно которой Ca должен иметь содержание меньше солнечного. Причины, приводящие к увеличению содержания Ca, будут рассмотрены ниже.

Представленная в наше распоряжение небольшая сетка самосогласованных диффузионных моделей атмосфер в интервале 7400 – 9200 К (LeBlanc & Monin, 2004) плюс модели для T_{eff} =11000 и 12000 К (LeBlanc et al., 2009), любезно присланные авторами, позволили провести следующий эксперимент. Мы выбрали несколько линий нейтрального и ионизованного Cr и Fe, чаще всего используемых при анализе химического состава, и рассчитали для них синтетические спектры по диффузионным моделям с градиентами химического состава. Затем, рассматривая эти спектры как наблюдения, мы провели обычную процедуру анализа химического состава с моделями атмосфер ATLAS9, имеющих те же параметры, что и диффузионные модели. Результаты эксперимента показаны на Puc. 2.10 открытыми красными квадратами. Полученная среднеквадратичная ошибка составляет, в среднем, ±0.3 dex, что хорошо согласуется с достаточно большим разбросом в содержаниях, определяемых для Ар звезд. Отметим, что ошибка в содержаниях Сг и Fe в атмосферах нормальных звезд обычно в несколько раз ниже, чем у Ар звезд (см. Таблицу A1.1 Приложения №1). Наблюдаемые аномалии Сг и Fe и их тенденция с ростом температуры до 10000 K хорошо согласуется с предсказаниями теории диффузии. Однако, при более высоких температурах максимальное равновесное содержание Сг, которое способна поддерживать диффузия, гораздо выше, чем наблюдаемые аномалии. Наблюдаемое содержание Сг начинает уменьшаться с дальнейшим ростом температуры, тогда как в диффузионных моделях оно остается постоянным; эта величина зависит от граничных условий на максимум и минимум содержания при расчетах. Такие же проблемы возникают и у других элементов железного пика, солнечное обилие которых на 2–4 порядка ниже, чем содержание железа.

Рассмотрим процессы, приводящие к ослаблению или усилению диффузионного разделения элементов в звездных атмосферах.

Влияние турбулентности

В предыдущем разделе было показано, что температурная зависимость содержания основных элементов Cr и Fe в атмосферах нормальных звезд имеет похожую форму, что и у Ap звезд, но гораздо меньший масштаб. В принципе, процесс диффузии должен происходить в лучистых атмосферах любых звезд, но характерные скорости этого процесса очень малы, и любые турбулентные движения разрушают стратификацию, создавая однородную среду. Чем меньше турбулентность, тем более благоприятные условия создаются в атмосферах звезд для диффузионного разделения элементов. У всех Ap звезд скорость микротурбуленции равна нулю (не путать с уширением, вызванном магнитной интенсификацией), тогда как у нормальных звезд она составляет от 1.5 до 2.5 км с⁻¹в диапазоне эффективных температур 6000-10000 К. Эта повышенная микротурбулентность, очевидно, и является фактором, препятствующим диффузии Cr и Fe в нормальных звездах при этих температурах. Однако, при более высоких температурах у нормальных звезд микротурбулентность исчезает, но мы не наблюдаем избытков Cr и Fe, типичных для горячих Ар звезд. Вероятно, в последних важную роль в диффузионном процессе начинает играть магнитное поле.

Магнитное поле

Обычно считается. что основная роль магнитного поля – это стабилизация атмосферы, однако магнитное поле влияет на диффузию элементов непосредственно. Во-первых, диффузия ионов меняется, когда они двигаются поперек магнитного поля, и это различие в диффузии нейтральных частиц и ионов рассматривается как основной механизм создания поверхностных неоднородностей химического состава, наблюдаемых у большинства Ар звезд (Michaud et al., 1981). Во-вторых, зеемановское расщепление спектральных линий меняет распределение потока энергии, что приводит к изменению (обычно увеличению) радиационного ускорения (Alecian & Stift, 2004). Некоторые заключения о роли магнитного поля можно сделать на основании сопоставления содержаний элементов в звездах одинаковых температур, но с сильно различающимися магнитными полями. В качестве примера рассмотрим три звезды: HD 110066 (T_{eff} =9000 K, $\langle B \rangle$ =3.6 кГс), HD 133092 $(T_{\text{eff}}=9200 \text{ K}, \langle B \rangle \approx 1 \text{к} \Gamma \text{c})$ и HD 66318 $(T_{\text{eff}}=9200 \text{ K}, \langle B \rangle = 14.5 \text{ к} \Gamma \text{c})$, где $\langle B \rangle$ взято из соответствующих работ, приведенных в Таблице А1.2 Приложения №1. Содержание Cr и Fe у этих звезд совпадают в пределах ошибок определений, что свидетельствует о пренебрежимо малом влиянии магнитного поля на диффузию этих элементов при данной температуре. Зависимости, показанные на Рис. 2.10, построены для Ар звезд с различной интенсивностью магнитного поля, и они подтвеждают вывод о преимущественном влиянии температуры на диффузию Cr и Fe в диапазоне 6400-9500 К.

Содержание Si у звезд с полями 3.6 кГс и 14.5 кГс существенно выше, чем у звезды со слабым магнитным полем, что качественно согласуется с расчетами диффузии Si (Vauclair et al., 1979), согласно которым звезды без магнитного поля или со слабыми радиальными полями должны иметь солнечное содержание Si (HD 133092), а в звездах с сильными горизонтальными компонентами магнитного поля (HD 110066, HD 66318) избыток Si может доходить до 2-х порядков. Правда, расчеты Vauclair et al. (1979) были проведены для более горячих звезд с $T_{\rm eff} \geq 12000$ K.
Звездный ветер

Иная картина в этих звездах наблюдается для Са, который имеет одинаковое содержание со значительным дефицитом в HD 133092 и HD 66318 и такого же порядка избыток в HD 110066. Как было показано сначала Бабелем (Babel 1992), а затем подтверждено более детальными расчетами LeBlanc et al. (2009), при диффузии Са в спокойной атмосфере создается такое распределение элемента, которое соответствует содержаниям log (Ca/N_{tot}) ~ -6.0 - -6.2, наблюдаемым в HD 133092 и HD 66318. Учет звездного ветра со скоростью ~ $2. - 4. \cdot 10^{-15} M_{\odot}$ /год существенно сказывается на распределении Са с глубиной, повышая его содержание на порядок и более (см. рис.3 в работе Babel, 1992) в максимуме распределения, что и дает в результате солнечное содержание Са или даже его избыток. Можно предположить, что избытки и вариации в содержании Са в атмосферах Ар звезд появляются вследствие различного темпа умеренной потери массы звездами.

2.3.3. Редкоземельные элементы в атмосферах Ар звезд

Исследование редкоземельных элементов в атмосферах Ар звезд представляет особый интерес, поскольку один из них, Eu, рассматривается как индикатор пекулярности, и используется в названии, по крайней мере, двух групп магнитных пекулярных звезд, а именно: CrEu и SrCrEu-звезды. Однако, в связи с обнаружением пульсаций лучевых скоростей в атмосферах холодной части Ар звезд, которые получили название roAp (rapidly oscillating) звезды (подробно пульсации будут рассмотрены в Главе IV), и отождествлением линий с максимальной амплитудой пульсаций как принадлежащих линиям первых и вторых ионов Pr и Nd, интерес к изучению этих редкоземельных элементов резко возрос.

Присутствие аномально сильных линий редкоземельных элементов (лантаноидов) является отличительным признаком спектров Ар звезд. Анализ содержания лантаноидов в Ар звездых проводился исключительно по линиям элементов в первой стадии ионизации, хотя в атмосферах Ар звезд в широком диапазоне эффективных температур доминируют редкоземельные элементы (REE) во второй стадии ионизации. Линии вторых ионов некоторых REE были отождествлены в спектрах ряда Ар звезд, например: Ce III (Adelman, 1974; Adelman & Bidelman, 1979; Bord et al., 1997), Pr III (Adelman, 1974; Adelman & Bidelman, 1979; Mathys & Cowley, 1992), Nd III (Adelman & Bidelman, 1979; Cowley & Bord, 1998), Eu III (Ryabchikova et al., 1999a), Er III (Adelman, 1974), Tb III (Cowley et al., 2000), Dy III (Ryabchikova et al., 1999а). Однако, количественные исследования стали возможны только в последние годы, когда появились расчеты сил осцилляторов соответствующих линий. В работе Cowley & Bord (1998) было впервые отмечено, что в спектре пульсирующей Ap (roAp) звезды γ Equ содержание неодима по линиям Nd III на 1.5 порядка превышает содержание этого элемента, полученное по линиям Nd II. При исследовании быстрой переменности лучевых скоростей γ Equ нами было впервые показано, что именно линии Pr III и Nd III имеют максимальную амплитуду изменения лучевых скоростей с периодом пульсаций блеска (Саванов и др., 1999).

Нами было проведено сравнительное изучение аномалий Pr и Nd в спектрах roAp и непульсирующих звезд (Рябчикова и др., 2001; Ryabchikova et al., 2004a). Было показано, что во всех roAp звездах, а не только в γ Equ содержание неодима по линиям Nd III на 1 – 2 порядка превышает содержание этого элемента, полученное по линиям Nd II, тогда как непульсирующие звезды имеют PrNd-аномалии менее порядка, либо не имеют их совсем. Такие же результаты были получены для другого редкоземельного элемента Pr. В Таблице 2.5 собраны данные по наблюдаемым аномалиям Pr и Nd. Большая часть взята из наших работ (см. Таблицу A1.1 Приложения № 1).

На Рис. 2.11 представлены наблюдаемые PrNd-аномалии в пульсирующих и непульсирующих Ар звездах в зависимости от эффективной температуры. Наблюдается резкое падение величины аномалий в области $T_{\rm eff} \sim 8000$ К, что, по-видимому, определяет эмпирическую температурную границу гоАр звезд. Теоретические расчеты пульсаций гоАр звезд предсказывают более высокую температуру для верхней границы полосы нестабильности (Cunha, 2002). Четыре непульсирующие Ар звезды находятся в области, занимаемой гоАр звездами.

По результатам исследования были сделаны предсказания о возможном наличии пульсаций в атмосферах звезд HD 29578, HD 75445, HD 62140, HD 115708, которые имеют PrNd-аномалии, сопоставимые с известными гоАр звездыми, но у которых пульсации не были найдены по фотометрическому мониторингу. Звезда Южного полушария неба HD 75445 была включена в программу поиска пульсаций по наблюдениям на 3.6 м телескопе ESO со спектрографом HARPS. Заявка на наблюдения была составлена с участием автора диссертации. В атмосфере HD 75445 были обнаружены пульсации лучевой скорости с амплитудой ~20-50 м с⁻¹ и с периодом 9 минут. Спектр мощности пульсаций лучевой скорости в атмосфере Ap звезды HD 75445 (Kochukhov et al., 2009а) показан

1		(/	
HD	$T_{\rm eff}$	σT	Pr	$\sigma \Pr$	Nd	$\sigma \mathrm{Nd}$
Пульсирующие Ар (гоАр) звезды						
101065	6400	200	1.96	0.26	1.14	0.41
213637	6400	100	1.48	0.19	1.52	0.22
217522	6750	100	1.42	0.28	1.52	0.51
122970	6930	100	1.41	0.37	1.20	0.37
185256	7130	130	2.34	0.38	2.64	0.30
24712	7250	150	1.66	0.38	1.46	0.34
203932	7450	100	1.29	0.44	1.92	0.37
128898	7500	130	1.67	0.40	1.67	0.26
176232	7550	100	0.96	0.30	2.55	0.69
137949	7550	150	2.19	0.38	2.21	0.57
115226	7650	150	1.5	0.40	1.7	0.3
166473	7700	200	1.21	0.44	1.54	0.46
201601	7700	100	1.47	0.32	1.67	0.32
75445	7700	100	1.28	0.40	1.98	0.40
12098	7800	150	1.56	0.20	1.8	0.20
116114	8000	150	-0.22	0.31	0.14	0.45
137909	8000	150	-0.09	0.35	0.81	0.23
177765	8000	150	0.85	0.40	0.87	0.22
60435	8100	100	0.00	0.00	1.50	0.40
42659	8100	100	1.34	0.38	1.08	0.32
Непульсирующие Ар звезды						
115708	7550	150	1.53	0.35	1.60	0.28
178892	7700	250	1.22	0.40	1.21	0.33
29578	7800	150	0.62	0.40	1.10	0.40
62140	7900	150	0.80	0.39	1.29	0.25
18610	8100	150	-0.24	0.26	0.83	0.70
138633	8200	100	0.00	0.00	-0.55	0.40
204411	8400	100	0.00	0.00	-0.57	0.30
188041	8500	150	-0.51	0.48	0.04	0.47
110066	9000	200	-0.38	0.40	-0.36	0.45
212385	9200	200	0.10	0.40	0.25	0.40
133792	9400	200	0.00	0.00	-0.02	0.43
183806	10070	200	0.46	0.40	0.18	0.00
170973	10750	200	0.31	0.27	-0.15	0.18
144898	11250	250	-0.09	0.14	0.00	0.20

Таблица 2.5: REE-аномалии: разность в логарифмических содержаниях Pr и Nd, полученных по линиям первых и вторых ионов (REE III- REE II).

на Рис. 2.12. Звезда Северного полушария HD 115708 с PrNd-аномалиями, характерными для гоАр звезд, была исследована на предмет пульсаций лучевых скоростей (Семенко и др., 2008b) по спектральному мониторингу со спектрографом NES 6 м телескопа САО. Недостаточная стабильность спектрографа NES накладывает верхний предел ~100 м с⁻¹ на амплитуду пульсаций . По наблюдениям с NES пульсации с амплитудой ≥100 м с⁻¹ в атмосфере HD 115708 обнаружены не были, что не исключает наличия пульсаций с

Рис. 2.11: Наблюдаемые аномалии Pr (левая панель) и Nd (правая панель). roAp обозначены черными заполненными кружками, непульсирующие звезды - красными открытыми кружками.

меньшими амплитудами. В рамках программы наблюдений с HARPS были обнаружены пульсации с периодом 10.86 минут и с амплитудой более 1 км с⁻¹ в атмосфере ещё одной звезды HD 115226. Проведенный нами анализ химического состава показал наличие в атмосфере этой звезды PrNd-аномалий, характерных для гоАр звезд.

Когда были обнаружены первые REE-аномалии и нами проведено их систематическое исследование, две звезды, HD 116114 и HD 137909 (β CrB) по результам фотометрических исследований считались непульсирующими. Анализ результатов спектрального мониторинга с UVES показал наличие низкоамплитудных пульсаций в атмосферах HD 116114 (Elkin et al., 2005) и β CrB (Hatzes & Mkrtichian, 2004; Kurtz et al., 2007). У этих звезд Nd-аномалия невелика, а Pr-аномалия вообще практически отсутствует. Частично это может быть связано с трудностями измерения линий Pr II в спектрах более горячей части гоАр звезд из-за малой интенсивности линий и сверхтонкого расщепления. Линии Nd II измеряются точнее. Интересно, что пульсации в β CrB были обнаружены не по линиям Nd III, как в подавляющем большинстве гоАр звезд, а по линиям Ce II. Также по линиям CeII, CeIII, GdII, EuII недавно были обнаружены пульсации в атмосфере звезды HD 177765 (Alentiev et al., 2012). Pr- и Nd-аномалии в этой звезде также невелики, как и в β CrB, ~0.8 dex, но зато Ce- и Eu-аномалии составляют 2.5 и 1.7 dex, соответственно. Для β CrB нами были получены такие же величины Ce- и Eu-аномалий (Alentiev et al., 2012). HD 177765 и β CrB имеют более длинные периоды пульсаций по сравнению с остальными гоАр звездами и являются более проэволюционировавшими объектами. Таким образом,

Рис. 2.12: Спектр мощности пульсаций лучевой скорости в атмосфере Ар звезды HD75445.

мы делаем вывод, что REE-аномалии в целом являются спектроскопическими индикаторами пульсаций в атмосферах roAp звезд, но PrNd-аномалия, вероятно, отражает еще и эволюционный статус звезды.

2.4. Выводы.

Наблюдаемые зависимости содержания химических элементов Cr и Fe от температуры в атмосферах магнитных пекулярных звезд начинаются с солнечного содержания Cr и дефицита на порядок Fe при $T_{\rm eff}\sim$ 6500 K и показывают максимум в области $T_{\rm eff}\sim$ 9500 K, превышающем солнечное значение на 1.5 порядка для Fe и почти на 3 порядка для Cr. Содержания обоих элементов в максимуме практически равны, хотя солнечное содержание этих элементов различается почти на 2 порядка. C дальнейшим ростом температуры содержание Cr падает, а содержание Fe остается примерно на постоянном уровне, соответствующем избытку +1.0 dex. B диапазоне 6400–9500 K наблюдаемые зависимости хорошо описываются процессом диффузии элемента под совокупным действием гравитационного осаждения и радиационного ускорения. Температурная зависимость содержания этих же элементов в атмосферах нормальных звезд имеет похожую форму, но с максимумом, на порядки меньше наблюдаемого в Ар звездах. Не исключено, что процесс диффузии происходит и в атмосферах нормальных звезд, но из-за наличия микротурбулентности его эффективность очень мала. Показано, что в области эффективных температур 6400– 9500 К магнитное поле практически не влияет на процесс диффузии Сг и Fe в Ар звездах.

Содержание Si и Ca могут быть также объяснены в рамках диффузионной модели. Диффузия ионов Si в магнитном поле может создавать наблюдаемые избытки содержания Si. Избытки содержания Ca, которые невозможно создать в рамках простой модели диффузионного разделения элемента, могут быть объяснены наличием звездного ветра. Различный темп потери массы в диапазоне $2.-4.\cdot 10^{-15} M_{\odot}$ /год может объяснить вариации содержания Ca в атмосферах Ap звезд.

Присутствие REE-аномалий в атмосферах Ар звезд в целом является спектроскопическими индикаторами пульсаций в их атмосферах. В более молодых гоАр звездах преобладают PrNd-аномалии. В ходе эволюции звезды на ГП величина аномалий уменьшается и наиболее ярко выраженными становятся CeEu-аномалии. Это, вероятно, связано с протекающими в атмосферах гоАр звезд процессами диффузионного разделения химических элементов, зависящими от времени.

Глава 3. Стратификация химических элементов в атмосферах пекулярных звезд

Основываясь на результатах анализа химического состава атмосфер Ар звезд, приведенных в предыдущей Главе, мы пришли к выводу о необходимости детального исследования стратификации химических элементов в атмосферах этих звезд.

3.1. Наблюдательные проявления химической стратификации

Анализ поведения содержаний химических элементов, полученных по отдельным линиям различного возбуждения и степени ионизации, а также профилей сильных линий, имеющих крылья, обусловленные затуханием, позволил сформулировать следующие основные признаки проявления стратификации в звездных атмосферах:

- Невозможность описать ядра и крылья сильных спектральных линий одним и тем же содержанием элемента.
- Аномально сильная интенсивность линий высокого возбуждения элементов железного пика (E_i≥10 eV) по сравнению с линиями низкого возбуждения, не связанная с неточностями определения эффективной температуры.
- 3. Значительное различие в содержаниях, полученных по линиям одного и того же элемента, находящегося в разных стадиях ионизации.

Есть еще ряд менее отличительных признаков, перечисленных в обзоре Ryabchikova et al. (2003).

Первый признак проявляется в атмосферах практически всех пекулярных звезд, в спектрах которых наблюдаются сильные спектральные линии, часто резонансные, с заметными крыльями, обусловленными, в основном, эффектом Штарка. Это линии нейтрального гелия в горячих He-weak и He-strong звездах (см., например, рис.5,6 из Bonifacio et al., 1995 – пекулярная B-звезда Feige 86), резонансные линии Ga III в HgMn звездах (Smith, 1995), резонансная линия Ca II-K во всех пекулярных звездах с $T_{\rm eff} \leq 9000$ K (Babel, 1992).

Рис. 3.1: Линия Ва II 6141 в спектре звезды Пшибыльского. Наблюдения показаны двойной линией. Сплошная и штриховая линии показывают синтетические спектры, наилучшим образом описывающие крылья линии $(\log(Ba/N_{tot}) = -7.60)$ и ядро линии $(\log(Ba/N_{tot}) = -9.40)$.

На Рис. 3.1 показана линия Ва II 6141 в спектре одной из самых холодных пекулярных звезд – звезды Пшибыльского (HD 101065). Хорошо видно, что для описания ядра линии (штриховая линия) и крыльев линии (сплошная линия) нужны синтетические спектры с различным содержанием Ва: $\log(Ba/N_{tot}) = -9.40$ для ядра и почти на 2 порядка больше, $\log(Ba/N_{tot}) = -7.60$ для крыльев. Поскольку ядро линии поглощения образуется выше в атмосфере звезды, чем крылья, полученное несоответствие в содержаниях свидетельствует о наличии градиента Ва в атмосфере звезды Пшибыльского.

Такая же картина наблюдается и для резонансной линии Ca II-K, что хорошо видно на Рис. 3.2, взятом из нашей статьи Ryabchikova et al. (2008).

Как уже было упомянуто, первый детальный стратификационный анализ был проведен Бабелем (Babel, 1992), который смоделировал наблюдаемый профиль линии Ca II-K

Рис. 3.2: Линия Са II 3933.67 в спектрах нескольких холодных Ар звезд. Наблюдения показаны точками. Теоретические профили с однородным распределением Са в атмосфере показаны красной штриховой линией. Профили, рассчитанные в атмосфере с градиентами содержания Са, показаны сплошной синей линией. Подробно о стратификации Са см. Раздел 3.4.

в спектре Ар звезды 53 Сат при неоднородном распределении Са в атмосфере, полученном в ходе диффузионных расчетов. Позже, Бабель (Babel, 1994) провел исследования стратификации Са в атмосферах 28 Ар звезд по измерению эквивалентных ширин линии Са II-К в области ± 0.3 Å и ± 10 Å от центра линии и сравнению наблюдаемых величин с теоретическими диффузионными расчетами. Такое исследование позволило сделать вывод, что в атмосферах всех звезд с T_{eff}<9500 К наблюдаются скачки в содержании Са с положением скачка на оптических глубинах $-0.35 < \log \tau_{5000} < -1.6$. Содержание Са в верхней части атмосферы на порядок меньше солнечного, тогда как содержание Са в околофотосферных слоях примерно в 3 раза (+0.5 dex) должно превышать солнечное. В этой же работе впервые была использована степенчатая функция для аппроксимации распределения содержания элемента в атмосфере. Дальнейшее развитие техники спектральных наблюдений позволило перейти от полустатистических исследований к изучению стратификации не по эквивалентным ширинам, а по профилям спектральных линий. Wade et al. (2001) показали, что в атмосфере Ар звезды β CrB элементы Fe, Cr, Ca имеют скачки в содержании ~ 3 dex в районе оптических глубин log $\tau_{5000} \sim -0.6 - -0.7$ с концентрацией всех трех элементов в глубоких слоях атмосферы.

3.2. Анализ вертикального распределения элементов в атмосферах магнитных химически пекулярных звезд

Мы продолжили детальные исследования стратификации в атмосферах Ар звезд разных температур. В первую очередь выбирались звезды с малыми величинами магнитного поля, чтобы исключить его влияние на форму профиля спектральной линии. Несколько факторов играют важную роль при исследовании стратификации, и одним из самых важных является правильный выбор спектральных линий.

3.2.1. Выбор спектральных линий

Чтобы воспроизвести распределение содержания элемента по наблюдаемым профилям необходимо иметь линии, формирующиеся на разных глубинах в атмосфере звезды. Конечно, можно ограничиться одной спектральной линией типа Са II-К, но таких линий в оптической области для других элементов нет. Кроме того, крылья таких сильных линий очень блендированы линиями других элементов, что усложняет задачу подгонки теорети-

ческого и наблюдаемого спектров. Выбранные линии должны быть распределены достаточно равномерно по глубине формирования, чтобы уравновесить вклад отдельных линий в общее решение. Надо ясно понимать, что мы не можем надежно определять содержание в верхних слоях атмосферы, поскольку только центры нескольких самых сильных линий в оптической области образуются выше $\log \tau_{5000} = -3.0$. На Рис. 3.3 показан пример подбора линий для расчета стратификации Fe в атмосфере HD 24712. Глубины образования точек профиля линий рассчитаны для однородного содержания $\log(Fe/N_{tot}) = -5.10$ по методике, предложенной в работе Achmad et al. (1991), с функцией вклада только в выходящее излучение в линии, а не в суммарное излучение линия+континуум. Это особенно важно при расчете глубин образования слабых линий и линий в стратифицированной атмосфере, поскольку включение континуума сдвигает рассчитанные глубины образования линий ближе к уровню формирования континуума. Например, если элемент сконцентрирован в верхних слоях log $\tau_{5000} < -3$, то при расчете оптической глубины с функцией вклада в суммарное излучение, линия имеет эффективную глубину образования ниже слоя с элементом (см. Табл.2 в Mashonkina et al., 2005). Очевидно, что при при таком выборе линий мы хорошо определяем содержание элемента в глубоких слоях атмосферы, положение и ширину скачка содержания, и хуже - содержание элемента в верхней части атмосферы. В показанном на Рис. 3.3 конкретном примере формальная ошибка а содержании в верхней зоне ± 0.3 dex, в нижней зоне ± 0.12 dex, в положении середины скачка ± 0.23 dex и ширины скачка ± 0.05 dex.

Список линий, участвующих в стратификационном анализе атмосфер всех исследованных звезд, приведен в Таблице А2.1 Приложения № 2. Для разных звезд стратификационный анализ был проведен для разного числа элементов и с участием разного набора линий в зависимости от эффективной температуры звезды и степени блендирования спектра.

3.2.2. Стратификация Si – Ва

γ Equ=HD 201601

 γ Equ является первой звездой, в которой нами был проведен стратификационный анализ (Ryabchikova et al., 2002). Анализ проводился методом проб и ошибок с моделью атмосферы, использованной нами при обычном анализе химического состава (Ryabchikova

Рис. 3.3: Распределение глубин образования профилей линий Fe I (сплошная красная линия) и Fe II (штриховая красная линия), участвующих в стратификационном анализе атмосферы Ap звезды HD 24712. Сплошной черной линией показано результирующее распределение Fe в атмосфере. Выделенные полосы показывают область формальных ошибок стратификационного анализа.

еt al., 1997а) (см. Таблицу 2.3). Поскольку у этой сверхмедленно вращающейся звезды магнитное поле $\langle B \rangle = 4$ кГс, то у многих линий отчетливо видна зеемановская структура. Расчеты синтетического спектра проводились по программе SYNTHMAG. Было исследовано распределение шести химических элементов, включая редкоземельные элементы Pr и Nd. Puc. 3.4 представляет полученные распределения в атмосфере γ Equ (левая панель) и сравненение наблюдаемых и теоретических спектров для однородного и стратифицированного распределений (правая панель). Все расчеты проводились в приближении локального термодинамического равновесия (ЛТР). Чтобы объяснить наблюдаемую PrNd-аномалию (см. Раздел 2.3.3), нам необходимо создать в атмосфере слой с преобладанием иона Nd III над ионом Nd II. В ЛТР преобладание иона Nd III над Nd II (то же справедливо для Pr) оказывается возможным только в самых глубоких слоях на уровне фотосферы, где просто невозможно сформировать линию с глубиной 40 % от непрерывного спектра, помещая туда слой. Сразу видно, что хотя предложенная стратификация Pr и Nd гораздо лучше

Рис. 3.4: Распределение химических элементов в атмосфере γ Equ (левая панель), полученное методом проб и ошибок. На правой панели показано сравнение участка наблюдаемого спектра с теоретическим, рассчитанным с однородным химическим составом (точечная линия) и со стратификацией (сплошная линия).

описывает наблюдаемые профили линий, даже такой огромной концентрации этих элементов выше $\log \tau_{5000} = -8$ недостаточно, чтобы полностью описать линии. Необходимо было 'спустить' слой концентрации редкоземельных элементов глубже в атмосферу. Известно, что в разреженных слоях атмосферы условие ЛТР уже не соблюдается, поэтому была сформулирована задача для проверки гипотезы формирования линий Pr и Nd в верхних слоях атмосферы при отказе от ЛТР. НеЛТР-формирование линий Pr и Nd будет рассмотрено в Разделе 3.3.

Второй раунд стратификационного анализа атмосферы γ Equ был проведен совсем недавно в рамках проекта по построению самосогласованных моделей атмосфер со стратификацией химических элементов (Shulyak et al., 2013). В этом анализе были использованы спектры гораздо лучшего качества, полученные со спектрографом UVES 8.2 м телескона ESO и экстрагированные из архива ESO (программа 76.D-0169). Разрешающая сила $R=80\,000$, отношение сигнала к шуму S/N~300, спектральная область 3030 – 10400 Å. Описание обработки спектров приведено в статье Cowley et al. (2007). Большой наблюдаемый спектральный интервал позволил изучить распределение 17 элементов – рекорд для стратификационного анализа. Было получено распределение Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Sr, Y, Zr, Ba, Pr, Nd. Все элементы от Mg до Zr концентрируются в глубоких слоях атмосферы ниже log $\tau_{5000} = -1.5$ с дефицитом на 0.5 – 2.5 dex относительно солнечного содержания в верхних слоях. Ва распределен практически равномерно, но это может быть связано с недостаточным набором подходящих линий для стратификационного анализа. Стратификация рассчитывалась по программе ddaFIT с несколько другой моделью атмосферы (LL-модель с $T_{\rm eff}=7550$ K, log g=4.0), чем первоначальная стратификация ($T_{\text{eff}}=7700$ K, log g=4.2). Самосогласованная LL-модель была получена в результате итерационного процесса моделирования с пересчетом стратификации на каждой итерации (Shulyak et al., 2013). В качестве стартовой модели была принята модель с параметрами T_{eff}=7700 K, log g=4.2. и со стратификацией, полученной методом проб и ошибок. На каждой итерации параметры модели подбирались путем сравнения теоретических потоков с наблюдаемыми. Мы использовали прокалиброванные в абсолютных потоках спектры низкого разрешения, полученные со спектрографом STIS (Space Telescope Imaging Spectrograph)¹, установленном на космическом телескопе Hubble. Наблюдения со STIS охватывают широкий спектральный диапазон от ультрафиолетовой до инфракрасной области (($\lambda\lambda 1700 - 10200$ Å). Кроме этого, были использованы среднеполосные спектрофотометрические данные из каталога Адельмана (Adelman et al., 1989) и фотометрические данные в системе JHKLM-W, взятые из электронной базы данных SIMBAD². Для полной сходимости модели и стратификации элементов потребовалось 3 итерации. Сравнение наблюдаемых и теоретических потоков, рассчитанных для лучшей модели с T_{eff}=7550 K, log g=4.0 и дефицитом гелия на 4 порядка, показано на Рис. 3.5. Такой дефицит гелия предсказывается диффузионной теорией. Теоретический поток рассчитывается с единицы площади поверхности звезды, поэтому подгонка теоретического потока к наблюдаемому с использованием параллакса $\pi = 27.55 \pm 0.62$ mas (van Leeuwen, 2007) позволила получить радиус γ Equ: $R = 2.06 \pm 0.05 R_{\odot}$. Светимость звезды $\log(L/L_{\odot}) = 1.09 \pm 0.04$.

Рис. 3.6 дает представление о распределениях некоторых элементов в атмосфере γ Equ, которые являются наиболее достоверными, т.к. базируются на достаточном количестве линий - индикаторов стратификации. На Рис. 3.6 также показано сравнение распределений Ca, Cr, Fe, полученных по программе ddaFIT и методом проб и ошибок. Несмотря на то, что использовались разные модели атмосферы, спектры разного качества и абсолютно разные методы расчетов стратификации, профили распределения показывают очень хорошее согласие. Более низкое содержание Fe в верхних слоях, полученное по новым данным

¹http://www.stsci.edu/hst/stis

²http://simbad.u-strasbg.fr/simbad/

Рис. 3.5: Сравнение наблюдаемых и теоретических потоков Ар звезды γ Equ.

программой ddaFIT, вероятно лучше отражает действительность, однако, это можно будет проверить только при наличии сильных УФ-линий Fe II, чувствительных к изменению содержания Fe в верхних слоях (Ryabchikova & Leblanc, 2011). Для хрома также показано распределение, полученное в работе Саванова и др. (2001). Метод исследования стратификации, предложенный в этой работе, применим только к одному элементу Cr, поскольку он основан на рассмотрении глубин образования восьми линий Cr II 30-го мультиплета, лежащих на разных расстояниях от 3-х (Cr II λ 4864.33) до 50 Å (Cr II λ 4812.34) от центра ядра линии H β . Глубина образования этих участков H β в атмосфере γ Equ составляет log $\tau_{5000} \sim -1.1$ и -0.07, соответственно. Следовательно, содержание элемента в верхних слоях с log $\tau_{5000} < -1.1$ после скачка определяется очень неуверенно. Оно завышено почти на порядок по сравнению с анализом, проведенным нами по большему числу спектральных линий разного возбуждения и разных стадий ионизации, формирующихся в гораздо более широком диапазоне оптических глубин.

На Рис. 3.6 также показано сравнение эмпирически полученных распределений элементов с результатами самосогласованных диффузионных расчетов, проведенных для γ Equ Φ. Лебланом (Ryabchikova & Leblanc, 2011). Согласие, в целом, неплохое, если учесть

Рис. 3.6: Распределение химических элементов Mg, Si, Ca, Cr, Fe, Sr в атмосфере γ Equ (черная сплошная линия). Синими точками показано распределение, полученное методом проб и ошибок. Зеленые точки показывают распределение Cr, полученное в работе Саванов и др. (2001). Красная штриховая линия показывает теоретическое распределение, полученное в ходе самосогласованных диффузионных расчетов с параметрами $T_{\rm eff}$ =7550 K, log g=4.0 (Ryabchikova & Leblanc, 2011).

то обстоятельство, что при расчете равновесного распределения в диффузионных моделях, т.е. такого, когда в каждом слое звезды сила лучевого давления уравновешивается силой тяжести, был поставлен предел ± 3 dex по отношению к солнечному содержанию. Содержание log(Fe/N_{tot}) не могло быть ниже -7.7 и выше -1.5, например, что и видно на Рис. 3.6. В диффузионных расчетах Ф. Леблана не учитывалось влияние магнитного поля на диффузию атомов и ионов, которое, согласно диффузионным расчетам Alecian & Stift (2010); Stift & Alecian (2012), может оказывать влияние на распределение элемента. Особенно это сказывается на распределении элемента в верхних слоях после скачка в областях поверхности звезды с горизонтальным полем, т.е. в районе магнитного экватора. Важно отметить, что практически для всех элементов скачки в содержании, полученные из наблюдений, расположены выше в атмосфере, чем скачки, полученные из теоретических расчетов. Такое различие получается практически всегда для звез
д с $T_{\rm eff}{<}10000$ K, если удается провести сравнение наблюдаемых распределений с диффузионными расчетами. Вообще говоря, скачок в содержании означает резкое изменение радиационного ускорения, что, вероятно, происходит, в зоне ионизации элемента. Сравнение наблюдений с теорией безусловно необходимый шаг как для развития и усовершенствования теоретических расчетов, так и для улучшения методов анализа наблюдений.

Рис. 3.7, 3.8 показывает сравнение наблюдаемых профилей спектральных линий с теоретическими при однородном (красная штриховая линия) и стратифицированном содержании элемента в атмосфере γ Equ.

HD 204411

НD 204411 явилась первой звездой, в которой анализ стратификации был нами сделан по программе ddaFIT (Ryabchikova et al., 2005а). Эшельный спектр звезды был получен соавтором, Ф.Леоне, со спектрографом высокого разрешения - SARG (R=164 000) 3.55 м телескопа TNG (Telescopio Nazionale Galileo). Обработка спектра проводилась стандартным образом с использованием пакета обработки IRAF (Tody, 1986). Параметры атмосферы были определены по фотометрии в системе Стремгрена и по оптической спектрофотометрии (см. Раздел 2.2 и Рис. 2.3), модель атмосферы рассчитывалась с ODF, учитывающей индивидуальный химический состав (Piskunov & Kupka, 2001; Kupka et al., 2004). Как видно из Рис. 2.3, использование разных величин покраснения E(B-V)=0.014 (Perry et al., 1982) и E(B-V)=0.048 (Lucke, 1978) приводит к несколько разным значениям параметров

Рис. 3.7: Сверху вниз: сравнение наблюдаемых (звездочки) и теоретических профилей линий Mg, Si, Ca в спектре γ Equ рассчитанных для однородного (красная штриховая линия) и стратифицированного содержаний элемента (синяя сплошная линия.

Рис. 3.8: То же, что на Рис. 3.7, но для линий Cr, Fe, Sr.

Рис. 3.9: Зависимость индивидуальных содержаний железа по линиям Fe II от потенциала возбуждения (левая панель) в атмосфере HD 204411 (заполненные кружки) и в атмосфере Сириуса (звездочки). Зависимость индивидуальных содержаний железа по линиям Fe II с потенциалом возбуждения > 10 eV от эквивалентной ширины линии (правая панель).

атмосферы: 8400g35 и 8700g34, соответственно. Анализ химического состава и стратификационный анализ были проведены по обеим моделям, но мы здесь представим результаты для первой модели. HD 204411 принадлежит с классу магнитных звезд, поэтому скорость вращения оценивалась по линиям Fe 1 $\lambda\lambda$ 5434.52, 5576.09, имеющих практически нулевой фактор Ланде. Наилучшее согласие теоретических и наблюдаемых профилей линий было получено с величиной проекции скорости вращения $v_e \sin i=6.3\pm0.1$ км с⁻¹. В спектре нет линий, показывающих намек на магнитное расщепление. Верхняя граница модуля магнитного поля, оцененного по дифференциальному уширению магниточувствительных линий, составляет ~750 Гс, что согласуется с величиной эффективного магнитного поля -88±14 Гс (Aurière et al., 2007). Поскольку линии в спектре узкие, магнитное поле мало, то анализ химического состава проводился по измеренным эквивалентным ширинам по программе widthV. Результаты определения среднего химического состава приведены в Таблице A1.1 Приложения №1. В атмосфере звезды наблюдается дефицит СNO элементов, характерный для большинства Ар звезд, избыток элементов железного пика, особенно, Cr, и очень небольшой избыток редкоземельных элементов.

Анализ отдельных линий Fe II показал, что наблюдается значительное различие в индивидуальных содержаниях, полученных по линиям с разными энергиями возбуждения, а при одной и той же энергии наблюдается зависимость индивидуального содержания

Рис. 3.10: Распределение элементов Si, Ca, Cr, Fe в атмосфере HD 204411 и сравнение наблюдаемых и теоретических профилей линий этих элементов. Обозначения, как на Рис. 3.7.

от интенсивности линии (Рис. 3.9). В спектре Сириуса таких различий нет. Наблюдаемые особенности являются признаками наличия стратификации, поэтому был проведен стратификационный анализ атмосферы HD 204411 по программе ddaFIT. На Рис. 3.10 показано сравнение наблюдаемых профилей линий элементов Si, Ca, Cr, Fe с рассчитанными для однородного и стратифицированного распределений элементов. Стратифицированное распределение элементов представлено на левой панели в верхней части рисунка.

Для всех четырех элементов скачок содержания резкий и наблюдается в узком диапазоне оптических глубин. Величина скачка для Ca, Cr, Fe меньше, чем в более холодной звезде γ Equ, что согласуется с теоретическими диффузионными расчетами.

HD 133792

Программа VIP (см. Раздел 1.3.4) была написана специально для исследования стратификации в атмосфере этой звезды (Kochukhov et al., 2006). UVES спектр этой звезды был получен в контексте программы 68.D-0254. Разрешающая сила R=80000. Наблюдения покрывают спектральную область 3030 – 10400 Å с провалами на 5760-5835 Å и 8550-8650 Å. Обработка проводилась стандартным методом, континуум аппроксимировался либо полиномом низкой степени, либо сглаживающими сплайновыми функциями. Необычайно узкие линии в спектре, а также видимое отсутствие магнитного поля делают эту звезду превосходным стандартом для проверки атомных параметров спектральных линий, не наблюдаемых в спектре Солнца и других нормальных звезд. Первоначальная оценка параметров атмосферы по фотометрическим индексам в системе Стремгрена (Hauck & Mermilliod, 1998) с использованием калибровки Moon & Dworetsky (1985) дала значения $T_{\rm eff}$ =9334 K, log g=3.84. Эти параметры были скорректированы по профилям водородных линий Н α и Н β . Использовалась сетка моделей Куруца (Kurucz, 1993a) с нулевой микротурбулентной скоростью и металличностью +0.5. В качестве окончательных параметров модели атмосферы были приняты $T_{\text{eff}}=9400\pm200$ K, log $g=3.7\pm0.1$. С этими параметрами проводился анализ химического состава и стратификации. По линиям, нечувствительным к магнитному полю, была получена практически нулевая скорость вращения с верхним пределом 1 км с⁻¹. Однако, линии с большим фактором Ланде показывали дополнительное уширение, по которому был оценен модуль магнитного поля $\langle B \rangle = 1.1 \pm 0.1$ кГс (см. Рис. 2.6 в Разделе 2.2.2). Химический состав определялся, в основном, по эквивалентным ширинам линий с помощью программы widthV. Только для частично блендированных линий, линий

Рис. 3.11: Распределение элементов Si, Ca, Cr, Fe в атмосфере HD 133792 и сравнение наблюдаемых и теоретических профилей линий этих элементов. Обозначения, как на Рис. 3.7.

со сверхтонким (hfs) или изотопным расщеплением использовался спектральный синтез. Результаты определения химического состава приведены в Таблице А1.1 Приложения № 1. Атмосфера звезды характеризуется большим избытком Fe и, особенно, Cr, содержание которого почти равно содержанию Fe, тогда как в солнечной атмосфере хрома на 2 порядка меньше, чем железа. Са показывает довольно большой дефицит. Избыток редкоземельных элементов, как и в HD 204411, весьма невелик, около 1.5 порядка. PrNd-аномалий не наблюдается. Легкие элементы Be, C, N, O наблюдаются в дефиците примерно на порядок, что согласуется с диффузионными расчетами для CNO, но не для Be, для которого диффузионные расчеты предсказывают избыток (Леблан, частное сообщение).

Стратификационный анализ был проведен для элементов Mg, Si, Ca, Cr, Fe, Sr. Мы ограничимся рассмотрением Si, Ca, Cr, Fe, поскольку для этих элементов проведен стратификационный анализ в атмосферах большинства звезд, что важно при сравнении результатов. На Рис. 3.11 показано сравнение наблюдаемых профилей линий элементов Si, Ca, Cr, Fe с теоретическими профилями, рассчитанными для однородного и стратифицированного распределений элементов. Полученное распределение элементов Si, Ca, Cr, Fe представлено в верхней части рисунка. Как и в атмосфере HD 204411, распределение самого пекулярного элемента, хрома, прказывает минимальный скачок в содержании. Также можно отметить уменьшение величины скачка Fe и Cr и сдвиг его в верхние слои атмосферы с ростом эффективной температуры, сравнивая распределения соответствующих элементов в атмосферах γ Equ, HD 204411 и HD 133792.

HD 170973

Определение параметров этой звезды было проведено нами (Ryabchikova et al., 2011), базируясь на оптической спектрофотометрии (Adelman et al., 1989) и на наблюдениях со спектрографом UVES по той же программе, что и предыдущая звезда HD 133792. Моделирование было проведено с LLmodels, в качестве исходного химического состава были взяты данные Kato (2003). Полученные параметры атмосферы $T_{\rm eff}$ =11200 K, log g=3.8 были позже скорректированы по водородным линиям. Окончательные значения $T_{\rm eff}$ =11000±200 K, log g=3.7±0.1 в пределах ошибок согласуются с параметрами, используемыми Kato (2003) ($T_{\rm eff}$ =10750 K, log g=3.5). Скорость вращения $v_{\rm e} \sin i$ =8.5 км с⁻¹ позволяет достаточно точно измерять эквивалентные ширины линий, не боясь блендирования. Судя по постоянству ширины профилей линий, магнитное поле этой звезды должно быть слабым. В спектре преобладают линии Cr II и Fe II высокого возбуждения. Стандартный анализ химического состава по эквивалентным ширинам с применением widthV показал хорошее согласие между индивидуальными содержаниями по линиям с разным потенциалом возбуждения, что предполагает отсутствие больших градиентов содержания этих элементов в атмосфере. Ранее, отсутствие стратификации Са было получено нами по тем же спектрам (Ryabchikova et al., 2008). Формальный стратификационный анализ показал наличие небольших сильно растянутых по глубине градиентов, что может быть простым следствием неточности в определении параметров атмосферы. Для этой звезды нашим соавтором Ф. Лебланом была рассчитана самосогласованная диффузионная модель. На Рис. 3.12 показано сравнение наблюдаемых и теоретических распределений Si, Са, Сг, Fe в атмосфере HD 170973. Для Сг и Fe отсутствие стратификации, полученное из наблюдений, подтверждается теоретическими расчетами, которые предсказывают большие избытки этих элементов в области формирования линий. Для Са согласие между теоретическими и наблюдаемыми содержаниями несколько хуже. Диффузионные расчеты для Si предсказывают примерно солнечное содержание около фотосферы и плавное уменьшение в верхние слои атмосферы, тогда как по наблюдениям мы получаем избыток элемента на порядок величины без заметной стратификации.

HD 10221

HD 10221 является самой горячей звездой, исследованной на предмет стратификации химических элементов (Глаголевский и др., 2005). Спектры HD 10221 были получены со спектрогрфом NES 6 м телескопа САО РАН. Разрешающая сила R=45000, отношение S/N=150-200, спектральная область 4030-5453 Å. Обработка проводилась с помощью комплекса программ, разработанных в САО РАН (Kudryavtsev, 2000). Магнитное поле этой звезды слабое (Aurière et al., 2007). Мы определили скорость вращения $v_e \sin i=27\pm2$ км с⁻¹. Параметры модели атмосферы были получены по калибровке Мооп & Dworetsky (1985) фотометрических индексов в системе Стремгрена (Hauck & Mermilliod, 1998) и корректировались по профилю линии Hβ. Для окончательного анализа были приняты следующие параметры модели: $T_{\rm eff}=11900\pm200$ K, log $g=3.9\pm0.2$, M=+0.5. Химический состав определялся по эквивалентным ширинам, а также по расчету синтетического спектра по программе SYNTH3. Содержания химических элементов приведены в Таблице A1.1 Приложения №1. В атмосфере наблюдается обычный для Ар звезд дефицит лег-

Рис. 3.12: Распределение элементов Si, Ca, Cr, Fe в атмосфере HD 170973. Синяя штриховая линия представляет результаты формального стратификационного анализа, красная точечная линия показывает усредненное содержание элемента в атмосфере, жирной черной линий показаны теоретические распределения, полученные в результате диффузионных расчетов. Заштрихованные зоны отмечают приблизительную область формирования линий, используемых при анализе. Солнечное содержание элементов отмечено горизонтальными тонкими линиями.

ких элементов He, C, Al; избыток Si, Cr, Mn, Fe, Sr и большой избыток редкоземельных элементов. Si наблюдается в двух, а Fe в трех стадиях ионизации. Мы провели стратификационный анализ этих двух элементов по программе ddaFIT. Fe распределен практически равномерно по глубине, что согласуется с диффузионными расчетами для подобных температур. Для Si получен скачок с амплитудой ~1.5 dex на оптической глубине $\log \tau_{5000} \sim -0.3$. Распределение обоих элементов и сравнение наблюдаемых и теоретических профилей линий Si показаны на Рис. 3.13.

Рис. 3.13: Распределение элементов Si и Fe в атмосфере HD 10221 (левая панель). Для Fe показаны ошибки процедуры стратификационного анализа ddaFIT, которые соответствуют стандартной ошибке обычного анализа химического состава. Точечной линией показано содержание этих элементов в атмосфере Солнца. На правой панели приведено сравнение наблюдаемых и теоретических профилей линий Si.

3.2.3. Сравнение с диффузионными расчетами.

В нашем распоряжении имеются несколько самосогласованных диффузионных моделей от 7550g40 до 12000g40, любезно предоставленные нам Ф.Лебланом. Часть из них (8000g40 и 12000g40) опубликована в работе LeBlanc et al. (2009). Эмпирический анализ стратификации, изложенный выше, охватывает тот же температурный диапазон, поэтому весьма важно сравнить результаты стратификации, определенной по наблюдениям, с теоретическими расчетами. На Рис. 3.14, 3.15, 3.16, 3.17 показано сравнение наблюдаемых и теоретических распределений элементов Si, Ca, Cr, Fe в атмосферах магнитных пекулярных звезд.

Для элементов Cr и Fe наблюдаемые и теоретические распределения элементов показывают очень похожее поведение с ростом температуры. Особенно хорошо это прослеживается для Fe. C ростом температуры уменьшается величина скачка, и он передвигается в верхние слои атмосферы. Содержание железа быстро растет в области формирования линий, и это обстоятельство объясняет крутой подъем среднего содержания железа в атмосфере Ap звезды в зависимости от эффективной температуры, который мы проанализировали в Главе II. Между температурами 11000 и 12000 К намечается уменьшение содержания Fe, которое мы также наблюдаем в звездах. Еще более резкие изменения содержания происходят у Cr. Однако, следует напомнить, что при диффузионных расчетах

Рис. 3.14: Левая панель: Наблюдаемая стратификация Si в атмосферах звезд γ Equ(7550g40 - черная линия с заполненными кружками), β CrB(8050g40 - красная линия с открытыми кружками), HD 204411 с (8400g35 - сплошная синяя линия с заполненными треугольниками), HD 133792 (9400g37 - фиолетовая линия с крестиками), HD 170973 (11000g37 - оранжевая линия с открытыми квадратами), HD 10221 (11900g39 - зеленая линия со звездочками)

Правая панель. Диффузионные расчеты: 7550g40 (черная линия с заполненными кружками), 8000g40 (красная линия с открытыми кружками), 9000g40 (синяя линия с заполненными треугольниками), 10000g40 (фиолетовая линия с крестиками), 11000g37 (оранжевая линия с открытыми квадратами), 12000g40 (зеленая линия) со звездочками.

налагается ограничение на максимум и минимум содержания элемента, удерживаемого в атмосфере. Для моделей 11000 и 12000 К происходит 'насыщение', и разность на один порядок между содержаниями Сг является следствием различия в налагаемом ограничении. Для модели 11000 ограничение составляло ±2 dex, для остальных моделей оно составляло ±3 dex. Для Са согласие с диффузионными расчетами несколько хуже, особенно для HD 133792, в атмосфере которой наблюдается значительный дефицит Са, тогда как теория предсказывает даже небольшие избытки. Для Si, наоборот, согласно теории с ростом температуры содержание падает до величин ниже солнечного обилия, тогда как наблюдения показывают избытки Si у горячих Ар звезд.

Детальный анализ профилей спектральных линий подтверждает наличие в атмо-

Рис. 3.16: То же, что на Рис. 3.14, но для Сг.

Рис. 3.17: То же, что на Рис. 3.14, но для Fe. HD 204411 с ddaFIT (8400g35 - сплошная синяя линия с заполненными треугольниками), HD 204411 с VIP (8400g35 - штриховая синяя линия),

сферах магнитных пекулярных звезд градиентов содержания ряда химических элементов, в первую очередь элементов железного пика и Si, с преимущественной концентрацией вблизи фотосферы.

3.3. Стратификация редкоземельных элементов в атмосферах холодных пекулярных звезд

Диффузионные расчеты, проводимые в рамках расчетов самосогласованных моделей атмосфер, включают 39 элементов от водорода до лантана (H – La). La является первым элементом в группе редкоземельных элементов La – Lu, давший этой группе еще другое название – лантаноиды. Хотя формально стратификация для La рассчитывается, ее нельзя использовать при рассмотрении стратификации лантаноидов в атмосферах Ар звезд, поскольку в расчетах учитывались только 2 стадии ионизации – нейтральные атомы и первые ионы. Как было показано в Разделе 2.3.3, в спектрах большинства холодных пекулярных звезд, главным образом, пульсирующих гоАр звезд, наблюдается аномалия редкоземельных элементов. По сильным линиям элемента в третьей стадии ионизации (вторых ионов) мы получаем содержание, на 1 – 2 порядка превышающее то, что получается по линиям первых ионов. В Разделе 3.2.2 было показано, что, в принципе, эту аномалию можно объяснить, если предположить концентрацию REE в верхних слоях атмосферы звезды. В рамках ЛТР-расчетов такой слой должен быть расположен выше $\log \tau_{5000} = -8$ (Ryabchikova et al., 2002) и иметь концентрацию, на 6-7 порядков превышающую солнечное содержание. Но даже с таким распределением очень трудно описать профили многих линий REE. Поскольку REE должны быть сконцентрированы в самых верхних разреженных слоях атмосферы, где приближение ЛТР уже не работает, была поставлена задача исследовать распределение REE при отказе от ЛТР. Исследовались элементы Pr и Nd, поскольку линии этих элементов во второй и третьей стадиях ионизации наблюдаются в достаточном количестве в оптических спектрах гоАр звезд, и для них имеются надежные атомные параметры.

НеЛТР исследования Pr и Nd были выполнены в рамках совместной работы Института астрономии и Института спектроскопии PAH (Mashonkina et al., 2009, 2005). НеЛТРрасчеты линий были выполнены Л. И. Машонкиной. В ходе совместной работы по базе VALD и по исследованию атомных параметров линий Pr и Nd сотрудниками Института спектроскопии PAH были проведены расчеты энергетических уровней и переходов атомов Pr II- III и Nd II- III по программе Коуэна (Cowan, 1981). Эти расчеты дополнили данные по энергетическим уровням этих элементов, известные из экспериментальных измерений. Для неЛТР-расчетов необходимо составить модель атома. Для этой цели все уровни (известные из экспериментов и предсказанные по теоретическим расчетам) были сгруппированы по близким значениям энергии и одинаковой четности. Окончательная модель атома Nd состоит из 247 уровней Nd II, 68 уровней Nd III и основного состояния Nd IV. Для Pr модель атома содержит 294 скомбинированных уровня Pr II, 54 скомбинированных уровня Pr III и основное состояние Pr IV. Силы осцилляторов для переходов между уровнями с экспериментально измеренными энергиями были взяты из базы VALD; для переходов между уровнями с предсказанными энергиями силы осцилляторов рассчитывались в Институте спектроскопии РАН. Статистическое равновесие Nd II и Pr II определяется, в основном, свободно-связанными переходами, поэтому сечения фотоионизации особенно важны. К сожалению, никаких экспериментальных данных или теоретических расчетов сечений фотоионизации для рассматриваемых элементов нет, и мы использовали оценки сечений фотоионизации в водородном приближении с учетом главного квантового числа уровней для Nd и эффективного квантового числа для Pr. Сечения столкновений с электронами для разрешенных переходов рассчитывались по формуле ван Регемортера (van Regemorter, 1962), для запрещенных переходов по формуле Аллена (Allen, 1973). Сечения ионизации электронным ударом рассчитывались согласно Drawin (1961). Уравнения переноса и статистического равновесия решались по улучшенной версии программы DETAIL (Butler & Giddings, 1985), использующей при решении метод ускоренной λ -итерации по схеме, предложенной Rybicki & Hummer (1991, 1992). НеЛТР-анализ проводился для сетки моделей атмосфер, рассчитанных по программе MAFAGS (Fuhrmann et al., 1997), использующей функции распределения поглощения (ODF) Куруца. Сравнение моделей MAFAGSc моделями ATLAS9 показали их хорошее согласие. Основные расчеты были сделаны для звезды HD 24712, имеющей параметры T_{eff} =7250 K, log g=4.3, [Fe/H]=0, а также рассчитывались отклонения от ЛТР для атмосферы с параметрами $T_{\text{eff}}=7700$ K, log g=4.2, представляющей атмосферу у Equ. Для линий Pr II при расчетах учитывалась сверхтонкая структура, данные для которой были взяты из Ginibre (1989). Магнитное поле в неЛТР расчетах не учитывалось, оно заменялось введением псевдомикротурбулентной скорости, индивидуальной для каждой линии (см. Раздел 2.2.2). Для каждого уровня рассчитывались коэффициенты отклонения от ЛТР $b_i = n_i^{\rm NLTE}/n_i^{\rm LTE},$ где $n_i^{\rm NLTE}$ и $n_i^{\rm LTE}$ концентрация ионов при неЛТР и при ЛТР. Списки линий Pr и Nd для неЛТР-анализа приведены в Таблице А2.2 и в Таблице А2.3 Приложения №2.

Коэффициенты отклонения от ЛТР для моделей 7250g43 (Pr) и 7700g42 (Nd) с одно-

Рис. 3.18: Распределение концентраций Pr II- III в атмосфере звезды в ЛТР и неЛТР приближении (левая панель) при однородном содержании [Pr]=+3 dex. На правой панели показано поведение коэффициентов отклонения от ЛТР для избранных уровней Pr II и Pr III. Номера уровней в модели атома даны в Таблице А2.2 Приложения № 2.

Рис. 3.19: То же, что на Рис. 3.18, но для Nd. Номера уровней в модели атома даны в Таблице А2.3 Приложения № 2.

Рис. 3.20: Левая панель: распределение относительного содержания [Pr/H] в атмосфере HD 24712 (сплошная линия). Штриховая и пунктирная линии показывают тестовые расчеты с уменьшением на 2 порядка сечений фотоионизации и с измененением эффективной интенсивности столкновений для запрещенных переходов.

Правая панель: коэффициенты отклонения от ЛТР (log b) для выборки уровней Pr II и Pr III при распределении Pr, показанном сплошной линией на левой панели.

Рис. 3.21: Левая панель: Распределение Nd в атмосферах звезд с 7700g42 (сплошная линия) и с 7250g43 (штриховая линия).

Правая панель: коэффициенты отклонения от ЛТР (log b) для выборки уровней Nd II и Nd III при распределении Nd, показанном сплошной линией на левой панели.

Рис. 3.22: Сравнение наблюдаемых (заполненные кружки) и теоретических профилей линий Pr II- III в спектре гоАр звезды HD 24712. Красными штриховыми линиями показаны расчеты со стратификацией Pr (Puc. 3.20) в приближении ЛТР, синей сплошной линией показаны неЛТРрасчеты.

Рис. 3.23: То же, что на Рис. 3.22, но для Nd.

родным содержанием каждого элемента, на 3 порядка превышающим солнечное, показаны на правых панелях Рис. 3.18 и Рис. 3.19. На левых панелях показаны расчеты концентраций ионов Pr II- III и Nd II- III при ЛТР и неЛТР. Сразу видно, что в условиях ЛТР на протяжении почти всей атмосферы концентрация Nd II превышает концентрацию Nd III, поэтому ни с какой стратификацией нельзя создать условия, когда линии Pr III/Nd III будут усилены, а линии Pr II/Nd II ослаблены. Но при отказе от ЛТР, начиная с оптических глубин log $\tau_{5000} \sim -3.5$, ионы Pr III/Nd III преобладают над ионами Pr II/Nd II, поэтому, если разместить слой с концентраций Pr или Nd выше этой границы, то мы можем получить нужный эффект. Методом проб и ошибок было подобрано распределение Pr и Nd в атмосфере HD 24712 и Nd в атмосфере γ Equ (Puc. 3.20 и Puc. 3.21), описывающее наблюдаемые профили линий Pr II- III и Nd II- III в спектрах HD 24712 и γ Equ.

Сравнение наблюдаемых и теоретических профилей линий Pr и Nd в спектре HD 24712, рассчитанных с предложенной моделью стратификации в приближении ЛTP и неЛTP, показано на Puc. 3.22 и Puc. 3.23.

Результаты исследований, представленные в Разделах 3.2.2 и 3.3, позволяют выдвинуть следующую модель химической структуры магнитных химически пекулярных звезд: атмосфера носит слоистый характер (cake-like) с концентрацией разных групп элементов на разных оптических глубинах.

3.4. Стратификация Са и изотопов Са в атмосферах Ар звезд

Как было показано выше, в работах Бабеля и в наших исследованиях было доказано неоднородное распределение Са по глубине атмосферы. Однако, сначала в HgMn звездах (Castelli & Hubrig, 2004), а затем и в Ар звездах (Cowley & Hubrig, 2005) была обнаружена еще одна аномалия этого элемента – смещение положения ядра линий инфракрасного триплета Ca II 8498, 8542, 8662 Å из-за значительного вклада тяжелого изотопа ⁴⁸Ca, который в стандартной солнечной смеси шести изотопов Ca с массами ядер 40, 42, 43, 44, 46, 48 составляет только 0.19 % (Lodders, 2010). Основной вклад 96.9 % приходится на долю ⁴⁰Ca. Nörtershäuser et al. (1998) измерили изотопные сдвиги энергетических уровней, которые, превращенные в длины волн, приведены в Таблице 3.1 для линии Ca II λ 8498 Å.

Нами было исследовано распределение Са в атмосферах 23 магнитных пекулярных звезд с узкими линиями с целью промоделировать распределение изотопов (Ryabchikova
λ (Å)	Изотоп	$\log g f \varepsilon$
8498.023	40	-1.43
8498.079	42	-3.60
8498.106	43	-4.29
8498.131	44	-3.10
8498.179	46	-5.81
8498.223	48	-4.14

Таблица 3.1: Атомные параметры для изотопных компонентов линии Са II λ 8498 Å. Относительное содержание изотопов Са ε , соответствует распространенности в солнечной системе.

et al., 2008). Для большинства звезд спектры с разрешающей силой $R=80\,000$ были получены со спектрографом UVES в ESO в контексте программы 68.D-0254. Список звезд с параметрами атмосфер, величинами скоростей вращения и магнитного поля приведены в Таблице 3.2. В качестве звезд сравнения использовались спектры нормальных звезд HD 73666, Проциона и Am звезды HD 27411. Спектр HD 73666 был получен со спектрополяриметром ESPaDOnS на канадо-франко-гавайском телескопе (CFHT) (см. детали в Fossati et al., 2007)

В стандартной моде наблюдений с UVES, которые были использованы в нашей работе, в спектр попадала только одна линия ИК-триплета Са II λ 8498 Å, поскольку остальные две линии попадали либо на край порядка, либо вообще в промежуток между двумя порядками. Сравнение профиля линии Са II λ 8498 Å в спектрах нормальных и пекулярных звезд приблизительно одинаковой температуры действительно показало сдвиги в центральных частях линии в пекулярных звездах (Рис. 3.24).

Безотносительно к изотопному содержанию Са распределение Са должно адекватно описывать профили всех наблюдаемых в спектре линий. Поэтому сначала был проведен обычный стратификационный анализ Са в атмосферах всех звезд, включая стандартные, в приближении аппроксимации ступенчатой функцией по программе ddaFIT. Параметры спектральных линий приведены в Таблице A2.1 Приложения № 2. Силы осцилляторов (log gf) взяты из VALD; параметры штарковского уширения log γ_{Stark} из расчетов

Рис. 3.24: Сравнение между наблюдаемыми профилями (звездочки) линии Са II 8498 Å и рассчитанными для изотопной смеси Са в солнечной системе (сплошная линия) в спектрах Проциона, Am звезды HD 27411, and A1 V звезды HD 73666. Наблюдаемые профили в спектре холодной (HD 217522) и более горячей (HD 133792) Ар звезд в середине и в конце рисунка ясно показывают смещение ядра линии Са II. Для демонстрационных целей спектры сдвинуты вниз относительно друг друга.

Таблица 3.2: Фундаментальные параметры звезд. В колонках даны номер HD звезды, эффективная температура, ускорение силы тяжести, проекция скорости вращения, оценка модуля магнитного воля и отношение радиального к азимутальному компоненту вектора напряженности поля, используемого в спектральном синтезе. гоАр звезды обозначены *.

HD	$T_{\rm eff}$	$\log g$	$v_{\rm e} \sin i$	$\langle B \rangle$	$B_{ m r}/B_{ m a}$	Ссылка
номер	(K)		$(\mathrm{km}\mathrm{c}^{-1})$	(кГс)		
Maa	енитные	химич	ески пекул.	ярные зе	зезды	
965	7500	4.00	3.0	4.4	3.2/3.2	Ryabchikova et al. $\left(2008\right)$
24712^{*}	7250	4.30	5.6	2.3	2.3/0.0	Ryabchikova et al. $(1997b)$
29578	7800	4.20	2.5	5.6	4.5/3.4	Ryabchikova et al. (2004a)
47103	8180	3.50	0.0	16.3	0.0/16.3	Ryabchikova et al. $\left(2008\right)$
66318	9200	4.25	0.0	15.5	10.2/11.7	Bagnulo et al. (2003)
75445^{*}	7650	4.00	3.0	3.0	2.8/1.0	Ryabchikova et al. (2004a)
101065^{*}	6600	4.20	3.5	2.3	2.3/0.0	Cowley et al. (2000)
111133	9930	3.65	5.0	4.0	4.0/0.0	Ryabchikova et al. (2008)
116114^{*}	8000	4.10	2.5	6.2	4.6/3.9	Ryabchikova et al. (2004a)
118022	9500	4.00	10.0	3.0	3.0/0.0	Ryabchikova et al. (2008)
122970^{*}	6930	4.10	5.5	2.5	2.5/0.0	Ryabchikova et al. (2000)
128898^{*}	7900	4.20	12.5	1.5	1.5/0.0	Kupka et al. (1996)
133792	9400	3.70	0.0	1.1	1.1/0.0	Kochukhov et al. (2006)
134214^{*}	7315	4.45	2.0	3.1	2.5/1.7	Ryabchikova et al. (2008)
137909^{*}	8000	4.30	2.5	5.4	5.0/2.0	Ryabchikova et al. (2004a)
137949^{*}	7550	4.30	1.0	5.0	2.2/4.5	Ryabchikova et al. (2004a)
144897	11250	3.70	3.0	8.8	6.3/6.2	Ryabchikova et al. (2006b)
166473^{*}	7700	4.20	0.0	8.6	5.0/7.0	Gelbmann et al. (2000)
170973	10750	3.50	8.0	0.0		Kato (2003)
176232^{*}	7650	4.00	2.0	1.5	1.5/0.0	Ryabchikova et al. (2000)
188041	8800	4.00	0.0	3.6	3.4/1.0	Ryabchikova et al. (2004b)
203932^{*}	7550	4.34	5.3	≤ 1		Gelbmann et al. (1997)
217522^{*}	6750	4.30	2.5	≤ 1.5	1.5/0.0	Gelbmann (1998)
		Звездъ	і сравнения	ļ		
27411	7650	4.00	18.5	0.0		Ryabchikova et al. $\left(2008\right)$
61421	6510	3.96	3.5	0.0		Allende Prieto et al. (2002)
73666	9382	3.78	10.0	0.0		Fossati et al. (2007)

Wavelength

Рис. 3.25: Сравнение наблюдаемых (звездочки) и теоретических профилей линий Са в спектре HD 176232 (10 Aql). Теоретические профили рассчитаны со стратификацией Са (сплошная синяя линия) и с однородным содержанием Са (красная штриховая линия). Нанесены сегменты спектра HD 176232 используемые в стратификационном анализе.

Dimitrijević & Sahal-Bréchot (1993). Линия с изотопным расцеплением Са II λ 8498 Å, а также резонансная линия Са II-К λ 3933 Å в звездах с $T_{\rm eff}$ <9000 K в стратификационном анализе не участвовали, но по второй линии проверялось качество стратификационного решения, а по первой линии проводился анализ распределения изотопов. Рис. 3.2 показывает, что распределение Са в форме ступенчатой функции, полученное по профилям других более слабых линий, достаточно хорошо описывает профиль резонансной линии. Для стандартных звезд формальное стратификационное решение по тем же линиям давало скачок в содержании, не превышающий 0.2 dex, что находится в пределах ошибок однородного анализа химического состава. Параметры стратификации Са в атмосферах исследуемых звезд приведены в Таблице 3.3. Скачки в содержании Са были получены для всех звезд за исключением одной из самых горячих, HD 170973.

Сравнение наблюдаемых и теоретических профилей линий, рассчитанных с однородным и стратифицированным распределением Са, показано на примере HD 176232 (10 Aql) (Puc. 3.25). В дальнейшем мы будем также использовать эту звезду для описания процедуры исследования изотопного распределения Са.

Таблица 3.3: Параметры стратификации Са и изотопной аномалии в атмосферах Ар звезд. Даны HD номера звезд, параметры ступенчатой функции распределения Са (содержание в верхней атмосфере, содержание в нижних слоях, положение скачка содержания и ширина переходной зоны), параметры изотопного разделения Са, если оно есть (оптическая глубина границы между слоями с легкими и тяжелыми изотопами Са, доминирующие изотопы в верхних слоях атмосферы). Последняя колонка показывает отклонение окончательного профиля стратификации от ступенчатой функции (*a*: рост содержания в верхних слоях после скачка, *b*: более сложная структура перехода между содержанием в верхних и в нижних слоях атмосферы).

HD	П	[араметры страт	гификации		Изотопная	а аномалия	Комм.
номер	$\log(Ca/N_{\rm tot})$	$\log(Ca/N_{\rm tot})$	$\log au_{5000}$	$\Delta \log \tau_{5000}$	$\log \tau_{5000}$	изотоп	
	(upper)	(low)	(step)	(step)	(isot)		
965	-8.4	-4.9	-0.7	0.1	-4.9	46 Ca	a
24712	-8.7	-5.1	-1.2	2.5	-1.4	46 Ca	
29578	-8.9	-4.3	-1.2	0.7			
47103	-7.7	-4.6	-0.8	0.3			
66318	-8.0	-5.0	-0.6	1.1			
75445	-8.9	-4.9	-0.9	0.2	-2.0	48 Ca	
101065	-8.9	-5.3	-0.4	0.4	-0.2	48 Ca	
111133	-10.0	-6.3	-2.0	0.4	-1.5	44 Ca	
116114	-7.4	-4.7	-1.3	0.2	-3.8	48 Ca	b
118022	-7.0	-2.0	-0.1	0.3	-1.5	48 Ca	
122970	-7.7	-5.1	-1.5	2.8	-1.6	46 Ca	
128898	-8.5	-4.0	-1.0	2.0	-1.9	48 Ca	
133792	-8.1	-5.6	-0.6	0.1	-1.0	48 Ca	
134214	-8.4	-4.8	-0.9	0.9	-1.5	48 Ca	
137909	-8.2	-4.4	-1.0	0.4	-4.4	48 Ca	a
137949	-9.6	-3.5	-1.0	1.8	-4.9	48 Ca	a
144897	-8.5	-5.2	-1.9	0.5			
166473	-8.5	-3.8	-1.0	1.1			
170973	-5.3	-5.0	-1.1	0.1			
176232	-9.0	-4.1	-1.2	1.8	-1.2	48 Ca	
188041	-7.4	-3.1	-1.2	2.5	-3.7	46 Ca	
203932	-8.7	-4.5	-1.2	2.6	-2.1	^{48}Ca	
217522	-8.8	-4.8	-0.3	0.7	-0.6	48 Ca	b

Рис. 3.26: Левая часть: Стратификация и разделение изотопов Са в HD 176232.

Левая часть: общий профиль распределения содержания, полученный по подгонке теоретических и наблюдаемых профилей линий по программе ddaFIT (Puc. 3.25), показан сплошной линией. Заштрихованные зоны показывают разделение в атмосфере легких и тяжелых изотопов Ca, необходимое для описания линии Ca II 8498 Å. Штриховой линией показано распределение Ca, полученное по тому же набору линий по программе VIP.

Правая часть: Определение изотопного состава и его распределения с глубиной атмосферы по линии Са II 8498 Å. Панели a,b,c показывают сравнение наблюдений с различными моделями распределения. **a)** Теоретический спектр с однородным (штриховая линия) и стратифицированным (сплошная линия) содержанием Са при изотопной смеси солнечной системы. **b)** Сплошная линия - то же, что в a), штриховая линия - 50:50 доли ⁴⁰Ca и ⁴⁶Ca+⁴⁸Ca при наличии стратификации. **c)** Сплошная линия - теоретический спектр, рассчитанный для разделения изотопов, показанного в левой части. Штриховая и штрих-пунктирная линия показывают соответствующий вклад ⁴⁰Ca и ⁴⁶Ca+⁴⁸Ca.

Рис. 3.27: Сравнение наблюдаемых (заполненные кружки) и теоретических профилей линии Са II 8498 Å в спектрах выборки звезд программы. Сплошной синей линией показаны расчеты со стратификацией, но с изотопным составом Са в солнечной системе; красная штриховая линия показывает расчеты с той же общей стратификацией, но при разделении изотопов по глубине. Звезды расположены в порядке возрастания напряженности магнитного поля.

Схема разделения изотопов в атмосфере показана на Рис. 3.26. Очевидно, что предложенная модель разделения изотопов хорошо описывает как профили оптических линий Са, так и профиль линии ИК-триплета. Методом проб и ошибок для каждой звезды по подгонке профиля линии Са II 8498 Å мы подобрали параметры изотопного разделения (оптическую глубину линии раздела и изотопный состав верхних слоев атмосферы). Эти данные находятся в 6-й и 7-й колонках Таблицы 3.3. При процедуре подгонки было сразу замечено, что четкое разделение изотопов характерно для звезд со слабыми полями. Чем сильнее поле, тем выше проходит граница раздела, пока совсем не исчезает (Рис. 3.27).

Более убедительно зависимость от магнитного поля представлена на Рис. 3.28, где

Рис. 3.28: Зависимость положения оптической глубины раздела между легкими и тяжелыми изотопами Са от напряженности магнитного поля. roAp звезды показаны черными заполненными кружками, непульсирующие Ap звезды – красными заполненными треугольниками.

показано изменение положения границы раздела изотопов как функция напряженности поля.

В результате проведенных исследований можно сделать несколько заключений:

- По спектрам звезд более высокого качества подтвержден вывод Бабеля (Babel, 1994) о стратификации Са в атмосферах магнитных Ар звезд с $T_{\rm eff} \leq 10\,000$ К
- Нет различия в стратификации Са между пульсирующими и непульсирующими Ар звездами
- Анализ профиля линии Са II 8498 Å в совокупности с общим стратификационным анализом показал наличие разделения легких и тяжелых изотопов в атмосферах Ар звезд
- Оптическая глубина границы раздела изотопов в большой степени зависит от напряженности магнитного поля: чем сильнее поле, тем выше в атмосфере расположена

граница. При напряженности поля $\langle B \rangle \ge 6-7$ кГс разделение изотопов исчезает.

Если общее распределение Са согласуется с предсказаниями теории радиационной диффузии, то разделение изотопов, свидетельствует в пользу действия еще одного механизма сепарации – светоиндуцированного дрейфа (СИД). Согласно Атутову & Шалагину (1988) СИД возникает, когда в пределах профиля линии поле излучения анизотропно. Такая анизотропия возникает для профилей слабых линий примесных изотопов ⁴⁶Са и ⁴⁸Са, расположенных в крыле сильной линии основного изотопа ⁴⁰Са. Эта анизотропия индуцирует дрейф примесных изотопов. Если слабые линии находятся в красном крыле сильной линии, то скорость дрейфа направлена в верхние слои атмосферы, и примесные изотопы выталкиваются, что и подтверждается нашими исследованиями. Зеемановское расщепление меняет форму линий и приводит к уменьшению анизотропии потока в пределах профиля линии примесного изотопа и, как следствие, к прекращению действия СИД.

3.5. Выводы.

Для выборки звезд в диапазоне эффективных температур 7200-12000 К проведен анализ распределений химических элементов Si, Ca, Cr, Fe, Pr, Nd по глубине атмосферы по наблюдаемым профилям спектральных линий. Распределение элементов представлялось в виде ступенчатой функции. Для одной из звезд, HD 133792, была решена обратная задача восстановления распределения элемента по профилям линий. Сравнение результатов, полученных обоими методами, показало, что ступенчатая функция является хорошим приближением для описания распределения элемента, вызванного диффузионным процессом в атмосфере магнитной пекулярной звезды. Полученные из наблюдений профили распределения элементов Cr и Fe по глубине атмосферы достаточно хорошо согласуются с диффузионными расчетами для этих элементов в самосогласованных моделях атмосфер. Проведен неЛТР- анализ образования линий редкоземельных элементов Pr и Nd и показано, что наблюдаемые PrNd-аномалии могут быть объяснены, если предположить, что эти элементы сконцентрированы в верхних слоях атмосфер Ар-звезд. Предложенная нами модель распределения редкоземельных элементов требует подтверждения теоретическими диффузионными расчетами, которые в настоящее время для этих элементов отсутствуют.

Для 23 звезд с температурами 6600 - 11500 К и магнитными полями 1 - 16.3 кГс было проведен стратификационный анализ Са. Было проведено моделирование про-

филя линии Са II λ 8498 Å инфракрасного триплета Са II, показывающего смещение центра линии, вызванного присутствием тяжелых изотопов Са. Получена эмпирическая модель дифференциального распределения изотопов Са в атмосферах Ар-звезд, согласно которой легкий изотоп ⁴⁰Са концентрируется ближе к фотосферным слоям, тогда как тяжелые изотопы ⁴⁶Ca+⁴⁸Ca выталкиваются в верхние слои атмосферы. С ростом магнитного поля звезды граница раздела изотопов исчезает. Предложено объяснение изотопного разделения Са, как результат светоиндуцированного дрейфа изотопов. Причиной дрейфа является анизотропии поля излучения в пределах профиля слабой линии примесного изотопа ⁴⁸Ca, расположенного в крыле сильной линии основного изотопа ⁴⁰Ca.

Результаты исследований, представленные в данной главе, позволяют выдвинуть следующую модель химической структуры магнитных пекулярных звезд: атмосфера носит слоистый характер (cake-like) с концетрацией разных групп элементов на разных оптических глубинах. Эта модель получила подтверждение при анализе пульсаций в гоАр звездах (Глава IV).

Примерно у 50 Ар звезд в интервале эффективных температур 6400-8200 К обнаружены нерадиальные акустические колебания (p-mode) в высоких обертонах мод с малым собственным значением $\ell = 1, 2, 3$. Впервые эти колебания были обнаружены по фотометрическому мониторингу у звезды Пшибыльского (Kurtz, 1978). Типичные периоды таких колебаний составляют 5-25 мин. Многие звезды пульсируют в нескольких периодах. Подробно пульсационные свойства гоАр звезд описаны в обзоре Kurtz & Martinez (2000). С развитием техники спектральных наблюдений появилась возможность получать спектры с высоким временным разрешением ~ 1 мин. и анализировать переменность лучевых скоростей. Анализ первых временных рядов спектральных наблюдений известной по фотометрии гоAp звезды γ Equ показал, что пульсационные характеристики отдельных линий –амплитуда и фаза изменения лучевой скорости (RV), зависят от принадлежности спектральной линии тому или элементу (Kanaan & Hatzes, 1998). Авторы этой работы также сделали вывод о том, что амплитуда RV изменений слабых линий Ti, Cr, Fe выше, чем амплитуда изменений сильных линий, что привело их к заключению о росте амплитуды в глубокие слои атмосферы, в область формирования слабых линий. Саванов и др. (1999) провели спектральный мониторинг γ Equ примерно в то же время. Наблюдения проводились в спектральной области 6100-6170 Å. Анализ наблюдений и тщательное отождествление спектральных линий показали, что максимальную амплитуду RV пульсаций показывают линии редкоземельных элементов Nd III λ 6145 и Pr III λ 6160. Еще более детальный анализ RV пульсаций в атмосфере γ Equ, проведенный Кочуховым и Рябчиковой (Kochukhov & Ryabchikova, 2001) по спектрам более высокого спектрального и временного разрешения в той же спектральной области, подтвердил вывод Саванова и др. Амплитуда пульсаций в линиях редкоземельных элементов составляла 500-800 м с⁻¹, тогда как в неблендированных линиях других элементов, Fe, Ba, амплитуда не превышала 100 м c^{-1} . Ryabchikova et al. (2002) впервые предложили стратификационную модель атмосферы (см. Раздел 3.2.2), которая связала пульсационные характеристики с вертикальным распределением химических элементов. Предложенная модель дает общую картину наблюдаемых пульсаций в roAp звездах как результат распространения магнитоакустической волны с ростом амплитуды в верхние разреженные слои атмосферы. Избирательность наблюдаемых пульсационных характеристик есть следствие прохождения волны через химически стратифицированную атмосферу.

Мы детально рассмотрим предложенную модель для одной из самых изученных roAp звезд – HD 24712.

4.1. Наблюдение пульсаций в атмосфере HD 24712

Пульсации с периодом ~6 мин. в атмосфере HD 24712 были открыты Куртцем (Kurtz, 1982) по фотометрии. Анализ фотометрических пульсаций показал наличие модуляций амплитуды пульсаций с периодом звезды P_{rot} =12.45 суток. Максимальная амплитуда пульсаций совпадает с максимумом кривой магнитного поля (Kurtz, 1982). Matthews et al. (1988) обнаружили переменность лучевых скоростей с тем же приблизительным периодом, а также изменение RV амплитуды синхронно с изменением пульсационной амплитуды блеска в течение двух последовательных ночей наблюдений. Анализ результатов фотометрической кампании WET (Whole Earth Telescope) (Kurtz et al., 2005) показал наличие восьми периодов пульсаций, два из которых, P_{puls} =6.125 мин. и P_{puls} =6.282 мин. имеют максимальную амплитуду пульсаций. В этой же работе было показано влияние магнитного поля на распределение частот акустических пульсаций.

Для детального исследования пульсационных характеристик в атмосфере HD 24712 нами были проведены спектральные наблюдения с высоким временным разрешением синхронно с фотометрическим мониторингом с борта космического телескопа MOST (Ryabchikova et al., 2007). Наблюдения проводились 10/11 ноября 2004 (спектрограф HARPS 3.6 м телескопа ESO, $R=120\,000$), 11/12 и 12/13 ноября 2004 (спектрограф UVES 8.2 м телескопа ESO, $R=80\,000$, программа DDT 274.D-5011) и 14/15 ноября 2004 (спектрограф SARG 3.55 м телескопа TNG, $R=57\,000$). Временное разрешение наблюдений составляло 60, 50 и 129 секунд на каждом из инструментов; отношение сигнала к шуму 120, 300 и 120, соответственно. Всего было получено 92 спектра с HARPS, 165 спектров с UVES и 35 спектров с SARG. Для быстрой обработки спектров одним из соавторов, Д. Ляшко, была написана специальная программа, включающая основные шаги обработки ССD-спектров. Уровень континуума проводился делением на функцию блеска плоского поля для каждого порядка с последующей нормировкой на единицу. Для эшельных спектров проводилась двумерная калибровка по длинам волн, которая обеспечивала точность $\sim 20 \text{ м c}^{-1}$. Спектры были получены в фазах вращения вблизи фазы максимума магнитного поля. Фазы (0.87, 0.94, 0.03 и 0.18) рассчитаны по эфемериде из работы Ryabchikova et al. (2005b). Наблюдения покрывали спектральную область 3300-6800 Å. Для этой области были выбраны линии из базы VALD по запросу 'extract stellar' для модели атмосферы с параметрами 7250g43 и химического состава, представленного в Таблице A1.1 Приложения № 1, и сосчитан синтетический спектр по программам SYNTH3 и SYNTHMAG. По суммарным спектрам HARPS и UVES1 был оценен модуль магнитного поля $\langle B \rangle \sim 3.1$ кГс в фазах максимума по частично-расщепленным линиям Cr I 5247.56 Å (эффективный фактор Ланде g=2.51) и псевдодублету Fe II 6432.48 (g=1.82). Сравнивая синтетический спектр с наблюдаемым, мы отобрали неблендированные линии, для которых были измерены лучевые скорости. Скорость измерялась по центру тяжести спектральной линии в каждом спектре временного ряда наблюдений относительно усредненной скорости для всего ряда (общая лучевая скорость звезды). Данные измерений для отдельных линий представлены в Таблице А3.1 Приложения № 3. В колонках 2-6 даны детали Фурье-анализа измерений лучевых скоростей для спектров HARPS и UVES1. Результаты, приведенные в этой таблице, показывают, что со 100% вероятностью линии практически всех редкоземельных элементов от La до Lu пульсируют с периодом, близким к фотометрическому $P_{puls}{=}6.125$ мин. Также пульсации наблюдаются в ядрах линий водорода. Амплитуда пульсаций в линиях элементов железного пика, если присутствует, не превышает 50 м c^{-1} . В некоторых случаях присутствие пульсаций вызвано, скорее всего, блендированием линиями редкоземельных элементов. Сравнение с фотометрической кривой, полученной синхронно на космическом телескопе MOST, показало замечательное согласие между масштабированными кривыми RV и блеска (Рис. 4.1). Обе кривые синхронно воспроизводят амплитудные модуляции, вызванные биением колебаний с тремя периодами максимальной амплитуды. Это означает отсутствие различий в частотных решениях пульсаций блеска и лучевых скоростей. По анализу лучевых скоростей было получено три периода пульсаций максимальной амплитуды 6.125 мин., 6.282 мин. и 6.202 мин., соответствующие частотам ν_4 , ν_2 и ν_3 из работы Kurtz et al. (2005).

Сразу отметим, что хорошее согласие кривых блеска и RV получается, если мы

PR3_5299: phot. signal shifted about -197sec. ($\phi = -0.536$)

Рис. 4.1: Сравнение масштабированной кривой RV изменений для линии Pr III 5299 Å (заполненные кружки) с синтетической кривой блеска (сплошная черная линия), рассчитанной с тремя частотами максимальной амплитуды, определенными по полному ряду наблюдений с MOST. Крестиками показаны реальные наблюдения с MOST. RV измерения соединены точечной линией.

Линия	λ (Å)	P	hase lag
		в секундах	в долях периода
${ m H}eta$	4861	-356 ± 25	-0.97 ± 0.08
EuII	6645	-356 ± 22	-0.97 ± 0.06
Nd II	6650	-313 ± 22	-0.85 ± 0.06
$\mathrm{H}\alpha$	6563	-307 ± 22	-0.84 ± 0.06
Nd III	5286	-301 ± 21	-0.82 ± 0.06
Nd II	5255	-297 ± 21	-0.81 ± 0.06
Nd III	6690	-294 ± 22	-0.80 ± 0.06
NdIII	5851	-283 ± 22	-0.77 ± 0.06
Dy III	5730	-278 ± 22	$-0.76 {\pm} 0.06$
NdIII	5845	-270 ± 21	-0.73 ± 0.06
Nd III	5203	-255 ± 21	-0.69 ± 0.06
Nd III	5294	-247 ± 22	-0.67 ± 0.06
Pr III	5300	-197 ± 21	-0.54 ± 0.06
TbIII	5505	-104 ± 22	-0.28 ± 0.06

Таблица 4.1: Сдвиги в секундах между кривой блеска и кривыми лучевых скоростей для линий различных элементов. В четвертой колонке даны фазовые сдвиги, рассчитанные с периодом пульсаций 6.125 мин.

сдвинем кривую RV по времени на -197 сек. (-0.54 по фазе, рассчитанной с основным периодом пульсаций 6.125 мин.). Обнаруженный сдвиг означает, что максимум блеска достигается после максимума лучевой скорости. Мы провели кросс-корреляционный анализ синтезированной кривой блеска и кривых лучевых скоростей для индивидуальных линий. Результаты этого анализа приведены в Таблице 4.1. Изменение амплитуды и фазы пульсаций в атмосфере HD 24712 наглядно продемонстрировано на Рис. 4.2.

Отчетливо видна бегущая волна. Чтобы правильно определить, куда она бежит, нам надо рассчитать модель атмосферы, химическую структуру атмосферы и эффективные глубины образования линий. Поскольку ядра водородных линий также обнаруживают

Рис. 4.2: Кривые лучевых скоростей отдельных линий в спектре HD 24712, полученные путем свертки с основным периодом пульсаций 6.125 мин.

пульсационный сигнал, были проведены пульсационные измерения вдоль ядра линии (бисекторы) На.

4.2. Самосогласованная эмпирическая стратификационная модель атмосферы HD 24712

Стратификационная модель атмосферы была построена нами по программе LLmodels по итерационной схеме, пересчитывая на каждой итерации стратификацию основных элементов Si, Ca, Cr, Fe, Sr, Ba, Pr, Nd, а также содержание остальных элементов, если понадобится. В качестве стартового приближения была взята наша модель 7250g43 и химический состав из работы Ryabchikova et al. (1997b). Для Pr и Nd расчет стратификации проходил в неЛТР-приближении (см. Раздел 3.3). В качестве начального распределения было взято решение, полученное в Разделе 3.3 (Mashonkina et al., 2009, 2005). Стратификационный анализ проводился по спектрам HARPS и UVES1, полученным усреднением спектров временных рядов наблюдений в фазах вращения 0.87 и 0.94, т.е. вблизи максимума магнитного поля. Расчет самосогласованной модели проходил в несколько основных этапов:

- 1. Расчет небольшой сетки моделей атмосфер вокруг стартовой модели с начальным средним химическим составом
- 2. Определение $T_{\rm eff}$ и log g по профилям бальмеровских линий, широкополосной фотометрии и/или спектрофотометрии
- 3. Расчет усредненного содержания и стратификации избранных элементов с полученными параметрами атмосферы
- 4. Расчет новой сетки моделей с содержаниями и стратификацией из пункта 3)
- 5. Повторение всего процесса, начиная с пункта 2), до полной сходимости.

Чтобы рассчитать модель, обычно, требуется порядка 2-3-х итераций. Для HD 24712 модель сошлась во второй итерации.

LLmodels производит расчеты моделей в ЛТР-приближении. Учет неЛТР для Pr и Nd в расчетах модели происходил следующим образом. Мы брали полученное распределение элемента и считали линии в ЛТР, уменьшая силы осцилляторов линий Pr-Nd II и Pr-Nd III на величину, равную средней неЛТР поправке $\Delta_{\text{NLTE}} = \log(N_{el}/N_{tot})_{NLTE} - \log(N_{el}/N_{tot})_{LTE}$. Для HD 24712 мы использовали поправки -1 dex для линий Pr-Nd II и +0.5 dex для линий Pr-Nd III. Распределение элементов Pr и Nd подбиралось методом проб и ошибок по совпадению наблюдаемых и теоретических эквивалентных ширин, рассчитанных в неЛТР-приближении (см. Раздел 3.3). Для элементов Si, Ca, Cr, Fe, Sr, Ba стратификация рассчитывалась по программе ddaFIT. На Puc. 4.3 показана схема распределения содержания элементов относительно содержаний в атмосфере Солнца, полученная после второй итерации. Видно, что в верхних слоях атмосферы доминируют редкоземельные элементы.

На каждой итерации наблюдаемые потоки сравнивались с теоретическими. В качестве наблюдаемых потоков из электронной базы данных SIMBAD¹ были взяты показатели цвета в различных фотометрических системах с дополнительными данными в системе Стремгрена (Martinez, 1993) и в Женевской фотометрической системе (Burki G. et al.,

¹http://simbad.u-strasbg.fr/simbad/

Рис. 4.3: Распределение химических элементов по глубине в атмосфере HD 24712. Показано содержание элементов относительно их содержаний в атмосфере Солнца. Штриховой линией показан уровень фотосферы log $\tau_{5000} = 0$

2005). Фотометрические данные в широкополосных системах были переведены в абсолютные потоки с помощью калибровок Бесселя (Bessell et al., 1998) и Engels et al. (1981). Потоки в ультрафиолете были взяты из архива IUE².

На Рис. 4.4 проведено сравнение наблюдаемых и теоретических потоков в HD 24712. Теоретические потоки рассчитаны с моделью $T_{\rm eff}$ =7250 K, log g=4.1, полученной во второй итерации.

Концентрация Pr и Nd в верхних слоях атмосферы сказывается на распределении температуры с глубиной (Puc. 4.5). На оптических глубинах, где присходит резкий скачок концентрации этих элементов и где элементы железного пика имеют значительный дефицит, появляется температурный подъем на ~500 К. Величина температурного скачка несколько зависит от деталей распределения REE и от методов их учета в расчетах модели атмосферы. Стратификация химических элементов не очень сильно влияет на распределение потока, за исключением области короче $\lambda = 2000$ Å, где модели со стратификацией

²http://ines.ts.astro.it/

Рис. 4.4: Наблюдаемые (символы) и теоретические потоки в HD 24712. Сплошной черной линией показано распределение для модели 7250g41, рассчитанной со стратификацией, показанной на Рис. 4.3.

предсказывают значительное, до порядка величины, увеличение потока по сравнению с потоками, рассчитанными с моделями с однородным химическим составом. Но в звезде с температурой 7250 К такое увеличение потока в далеком ультрафиолете практически не влияет на болометрическую светимость. IUE наблюдения как будто лучше соответствуют распределению энергии в стратифицированной атмосфере, однако большие ошибки наблюдений в этой области спектра не дают возможности однозначного выбора в пользу стратифицированной модели.

Подгонка теоретического распределения энергии в HD 24712 к наблюдаемому, прокалиброванному в абсолютных единицах, позволяет определить угловой диаметр звезды $\theta = 0.335 \pm 0.005$ mas. С параллаксом $\pi = 20.32 \pm 0.39$ mas, измеренным на спутнике Гипарх (van Leeuwen, 2007), мы получаем радиус звезды $R = 1.772 \pm 0.043 R_{\odot}$. Светимость звезды $\log(L/L_{\odot}) = 0.892 \pm 0.041$.

В Таблицах 4.2 и 4.3 приведены списки линий Pr II- III и Nd II- III, для которых были измерены амплитуды и фазы пульсаций. Эти линии участвовали в неЛТР стратификационном анализе Pr и Nd, и для них рассчитаны эффективные глубины образования по методике, предложенной в работе Achmad et al. (1991), с функцией вклада только в вы-

Рис. 4.5: Влияние стратификации Pr и Nd на распределение температуры с глубиной. Сплошная черная линия – первоначальная модель 7250g43, рассчитанная с однородным химическим составом; точечная красная линия – модель 7250g43 со стратификацией, полученной в первом приближении; штриховая и штрих-пунктирные линии показывают распределение температуры для окончательной модели 7250g41 со стратификацией и различной аппроксимацией неЛТР эффектов в Pr и Nd при ЛТР модельных расчетах.

ходящее излучение в линии (log τ_{5000}^l), а также в суммарное излучение линия+континуум (log τ_{5000}^{l+c}). Эти оптические глубины помещены в 4-ю и 5-ю колонки соответствующих таблиц. Сразу видно, что расчет оптических глубин с функцией вклада в суммарное излучение линия+континуум дает неправильные результаты в стратифицированных атмосферах, поскольку рассчитанная в этом случае глубина формирования некоторых линий лежит ниже слоя с концентрацией элемента (log $\tau_{5000} = -3$).

4.3. Распространение пульсационной волны в слоистой атмосфере

Рассчитанные глубины образования линий указаны в правой части Рис. 4.2. Кроме линий редкоземельных элементов была оценена глубина образования линий некоторых других элементов, которые показывают пульсации с небольшой амплитудой, например, линиии Y II (см. Таблицу АЗ.1 Приложения № 3), или вообще не показывают пульсаций в пределах ошибок измерений, например, линии Са I. Были также рассчитаны глубины образования ядра линии Н α и Н β в неЛТР-приближении с использованием модели атома водорода, описанной в работе Mashonkina et al. (2008). Поскольку мы не проводили анализ распределения иттрия в атмосфере HD 24712, глубины образования линий рассчитывались с однородным содержанием иттрия. Для линий Са и Fe расчет проводился с учетом стратификации элемента.

Распределение амплитуд и фаз пульсаций лучевых скоростей в атмосфере HD 24712, рассчитанных для основного периода пульсаций *P* =6.125 мин., показано на Рис. 4.6.

В атмосфере HD 24712 наблюдается довольно быстрый рост амплитуды пульсаций из нижних в верхние слои атмосферы, сопровождающийся изменением фазы пульсаций, характерным для бегущей волны. Однако, на оптических глубинах $\log \tau_{5000} = -3$ наблюдается скачок в изменении фазы. Это скачок фиксируется по линиям различных элементов и, в принципе, он может находиться с той или другой сторона от основной фазовой кривой, определяемой измерениями фаз колебаний бисекторов ядра линии H α и линиями Pr и Nd, поскольку фаза колебаний для отдельной линии может определяться с точностью до одного цикла. Если мы имеем несколько линий одного элемента, то мы их группируем по фазам вместе. Интересно отметить, что фазовый скачок наблюдается в тех слоях атмосферы, где мы имеем скачок концентрации элементов Pr и Nd.

Моделирование пульсаций а атмосфере HD 24712 было проведено в работе Saio et

Таблица 4.2: НеЛТР анализ линий Pr в спектре HD 24712. Даны центральная длина волны в Å, потенциал возбуждения нижнего уровня, сила осциллятора, оптические глубины образования линии для функции вклада в линию и линия + континуум. В последних восьми колонках приведены амплитуды A (in м с⁻¹) с ошибками σ_A и фазы ϕ с ошибками для двух основных периодов пульсаций HD 24712.

Длина волны	E_i, eV	$\log gf$	$\log\tau^l_{5000}$	$\log \tau_{5000}^{l+c}$	$\Delta_{\rm NLTE}$	Fixed periods							
						6.125 min				6.282 min			
Å						A	σ_A	ϕ	σ_{ϕ}	A	σ_A	ϕ	σ_{ϕ}
PrII													
5002.44	0.795	-0.87	-4.367	-0.787	0.86	195	20	0.392	0.016	82	20	0.698	0.039
5110.76	1.148	0.32	-4.450	-1.676	0.83	208	13	0.443	0.010	62	13	0.803	0.033
5129.54	0.648	-0.13	-4.545	-1.883	0.98	256	12	0.481	0.008	94	12	0.813	0.021
5135.14	0.950	0.01	-4.408	-1.276	0.89	292	15	0.454	0.008	118	15	0.838	0.021
5292.62	0.648	-0.26	-4.433	-1.270	0.94	192	18	0.403	0.015	91	18	0.750	0.031
5322.77	0.482	-0.32	-4.432	-1.365	1.10	361	18	0.471	0.008	139	18	0.798	0.021
6165.94	0.923	-0.20	-4.395	-1.272	0.89	228	12	0.453	0.009	72	12	0.810	0.028
6656.83	1.823	0.08	-4.358	-1.058	0.65	207	33	0.412	0.025	89	32	0.830	0.059
PrIII													
4929.12	0.359	-2.07	-5.160	-1.748	-0.25	293	13	0.553	0.007	125	13	0.909	0.017
5284.69	0.173	-0.77	-6.413	-5.824	-0.25	261	12	0.643	0.008	120	12	0.949	0.016
5299.99	0.359	-0.72	-6.350	-5.752	-0.28	268	13	0.657	0.008	128	13	0.964	0.016
5844.41	1.244	-1.01	-5.507	-3.849	-0.28	287	15	0.580	0.009	112	15	0.899	0.023
5998.97	1.173	-1.87	-5.499	-3.574	-0.11	302	13	0.576	0.007	130	13	0.898	0.016
6053.00	0.000	-1.98	-5.481	-3.709	-0.11	321	13	0.588	0.007	124	14	0.916	0.018
6090.01	0.359	-0.87	-6.300	-5.664	-0.30	263	13	0.632	0.008	120	13	0.938	0.018
6160.23	0.173	-1.02	-6.329	-5.765	-0.24	239	9	0.618	0.007	96	9	0.931	0.016
6195.62	0.000	-1.07	-6.293	-5.733	-0.38	283	13	0.631	0.008	133	14	0.951	0.017
6500.04	1.722	-1.26	-5.114	-1.939	-0.30	224	11	0.527	0.009	99	12	0.857	0.019
6692.25	1.162	-2.11	-5.007	-1.022	-0.34	254	20	0.500	0.013	102	20	0.846	0.031
6706.70	0.552	-1.49	-5.526	-4.069	-0.23	344	16	0.570	0.008	150	16	0.894	0.018

Таблица 4.3: НеЛТР анализ линий Nd в спектре HD 24712. Даны центральная длина волны в Å, потенциал возбуждения нижнего уровня, сила осциллятора, оптические глубины образования линии для функции вклада в линию и линия + континуум. В последних восьми колонках приведены амплитуды A (in м с⁻¹) с ошибками σ_A и фазы ϕ с ошибками для двух основных периодов пульсаций HD 24712.

Длина волны	E_i, eV	$\log q f$	$\log \tau_{5000}^l$	$\log \tau_{5000}^{l+c}$	$\Delta_{\rm NLTE}$	Fixed periods							
		000	0 3000	0 9000		6.125 min 6.282 min				82 min			
Å						A	σ_A	ϕ	σ_{ϕ}	A	σ_A	ϕ	σ_{ϕ}
Nd II													
4797.153	0.559	-0.69	-4.518	-3.468	0.70	207	9	0.366	0.007	72	9	0.705	0.021
4799.420	0.000	-1.45	-4.365	-1.996	0.62	218	12	0.350	0.009	76	12	0.709	0.026
4811 342	0.064	-1.01	-4 720	-3 737	0.66	297	12	0.397	0.006	107	12	0.726	0.018
4011.042	0.004 0.064	-0.80	-4.858	-4 112	0.64	261	11	0.385	0.000	101	11	0.726	0.018
4080.050	0.631	0.50	4.400	3 406	0.68	201	14	0.374	0.001	08	12	0.720	0.010
4989.900 5033 507	1 1 2 6	-0.50	-4.435	-3.400	0.08	265	14	0.374	0.008	108	13	0.752 0.716	0.022
5077 154	1.130	-0.47	-4.375	-3.025	0.57	200	10	0.334	0.000	108	11	0.710	0.019
5080 822	0.823	-1.04	-4.505	-2.470	0.02	212	11	0.330	0.009	90 75	11	0.001	0.021 0.021
5009.032	0.200	-1.10	-4.520	-3.195	0.00	220	11	0.302	0.007	10	11	0.720	0.021
5092.794	0.560	-0.01	-4.707	-4.005	0.75	200	11	0.378	0.007	92	11	0.755	0.020
5090.510	0.550	-1.18	-4.212	-1.543	0.70	221	10	0.331	0.007	84	10	0.712	0.018
5130.586	1.304	0.45	-4.835	-4.286	0.50	263	10	0.400	0.006	97	10	0.730	0.017
5132.328	0.559	-0.71	-4.534	-3.525	0.71	294	12	0.373	0.006	112	12	0.736	0.017
5143.337	0.182	-1.57	-4.281	-1.480	0.63	231	11	0.336	0.008	86	11	0.721	0.021
5165.129	0.680	-0.74	-4.428	-3.116	0.60	214	9	0.357	0.007	82	9	0.707	0.017
5176.781	1.121	-0.84	-4.229	-2.026	0.59	225	14	0.338	0.010	79	13	0.712	0.028
5182.587	0.745	-0.91	-4.214	-1.745	0.73	246	12	0.338	0.008	95	12	0.709	0.021
5234.194	0.550	-0.51	-4.535	-3.543	0.71	234	10	0.376	0.007	72	10	0.711	0.023
5255.506	0.205	-0.67	-4.862	-4.195	0.64	274	10	0.399	0.006	92	10	0.732	0.019
5276.869	0.859	-0.44	-4.591	-3.708	0.61	222	9	0.361	0.007	82	9	0.711	0.019
5311.453	0.985	-0.42	-4.534	-3.616	0.65	242	10	0.373	0.007	85	10	0.733	0.019
5314.554	0.985	-0.33	-4.154	-1.129	0.60	237	17	0.316	0.011	88	16	0.679	0.030
5319.815	0.550	-0.14	-4.912	-4.395	0.64	270	11	0.402	0.007	96	11	0.743	0.019
5356.967	1.264	-0.28	-4.532	-3.444	0.52	253	14	0.362	0.009	97	14	0.703	0.023
5361.467	0.680	-0.37	-4.667	-3.926	0.61	228	9	0.387	0.006	78	9	0.735	0.019
5485.696	1.264	-0.12	-4.557	-3.782	0.62	249	10	0.380	0.007	86	10	0.723	0.020
5533.827	0.559	-1.23	-4.257	-1.795	0.73	245	17	0.342	0.011	93	17	0.718	0.030
5734.550	1.878	-0.53	-4.125	-1.205	0.50	237	20	0.304	0.013	116	19	0.624	0.027
6210.664	1.140	-1.54	-4.126	-0.976	0.63	227	43	0.354	0.030	126	43	0.744	0.054
6465.218	2.108	-0.40	-4.106	-1.136	0.47	146	17	0.350	0.019	38	17	0.762	0.071
6514.959	0.182	-1.88	-4.249	-0.863	0.58	150	24	0.323	0.025	81	23	0.726	0.046
6637.187	1.452	-0.84	-4.196	-1.922	0.68	148	22	0.325	0.023	75	21	0.636	0.046
6637.956	1.773	-0.32	-4.248	-2.342	0.56	276	25	0.361	0.014	105	25	0.739	0.038
6650.517	1.953	-0.11	-4.266	-2.609	0.61	243	16	0.363	0.010	89	16	0.735	0.029
6680.137	1.686	-0.72	-4.155	-1.770	0.68	164	20	0.335	0.019	73	19	0.685	0.043
Nd III													
4796.500	0.141	-1.65	-5.066	-4.241	-0.34	226	8	0.441	0.006	90	8	0.774	0.015
4821.986	0.296	-2.45	-4.425	-1.869	-0.18	220	11	0.391	0.008	95	11	0.714	0.019
4912.944	0.000	-1.78	-5.017	-4.128	-0.30	247	9	0.430	0.006	97	9	0.754	0.016
4927.486	0.461	-0.80	-5.789	-5.345	-0.30	215	9	0.479	0.007	88	9	0.809	0.016
5127.044	0.631	-0.40	-5.937	-5.533	-0.26	170	7	0.514	0.007	70	7	0.826	0.018
5151.731	0.461	-1.54	-4.849	-3.964	-0.23	227	11	0.428	0.008	78	11	0.755	0.023
5294.113	0.000	-0.69	-6.027	-5.358	-0.40	188	10	0.540	0.009	89	10	0.856	0.019
5410.099	0.141	-1.52	-5.442	-4.884	-0.47	217	8	0.458	0.006	84	8	0.779	0.016
5566.015	0.296	-2.33	-4.513	-2.478	-0.28	206	8	0.402	0.006	81	8	0.727	0.016
5633.554	0.141	-2.22	-4.606	-2.949	-0.33	249	11	0.404	0.007	99	11	0.731	0.018
5677.179	0.631	-1.45	-4.962	-4.262	-0.25	245	11	0.436	0.007	106	11	0.755	0.017
5845.020	0.631	-1.18	-5.324	-4.845	-0.47	221	10	0.471	0.007	90	10	0.769	0.018
5851.542	0.460	-1.55	-4.931	-4.163	-0.31	258	11	0.431	0.007	98	11	0.755	0.018
5987.683	0.460	-1.26	-5.434	-4.962	-0.49	252	11	0.474	0.007	101	11	0.788	0.018
6145.068	0.296	-1.33	-5.487	-4.993	-0.52	196	10	0.481	0.009	80	10	0.797	0.021
6690.830	0.460	-2.46	-4.389	-1.769	-0.26	226	16	0.409	0.011	71	16	0.734	0.036

Рис. 4.6: Распределение амплитуд (верхняя панель) и фаз (нижняя панель) пульсаций в атмосфере HD 24712 для основного периода P = 6.125 мин.

Рис. 4.7: Левая панель: положение HD 24712 на диаграмме ГР. Эволюционные треки, рассчитанные со стандартным химическим составом (X, Z) = (0.7, 0.02) показаны сплошными линиями. Штриховая и штрих-пунктирная линии показывают треки для повышенного и пониженного содержания металлов. Открытыми квадратами на каждом треке обозначены положения моделей, наилучшим образом описывающих набор наблюдаемых частот.

Правая панель: зависимость температуры от оптической глубины, используемая при расчете пульсационных моделей. Штриховой линией показана стандартная зависимость, сплошной линией показана зависимость, полученная в результате моделирования атмосферы HD 24712.

al. (2010) в рамках неадиабатического анализа осесимметричных пульсаций магнитных звезд, предложенного Х. Сайо (Saio, 2005). В этой модели включены эффекты магнитного поля, имеющего дипольную структуру. Предполагается, что конвекция в оболочке звезды подавлена. Уравнение переноса решается в диффузионном приближении. Наблюдаемая величина магнитного поля на полюсе диполя $B_{\rm p}$ по разным исследованиям немного различается, от 3.9 кГс (Bagnulo et al., 1995) до 4.4 кГс (Ryabchikova et al., 1997b). На Рис. 4.7 показано положение HD 24712 на диаграмме ГР температура-светимость (левая панель). Параметры $T_{\rm eff}$ =7250±250 K (log $T_{\rm eff}$ =3.860±0.009) и log(L/L_{\odot}) = 0.892±0.041 были взяты из исследования, представленного в предыдущем Разделе 4.2.

Пульсационные модели рассчитывались для сетки параметров вблизи наблюдаемых и для диапазона магнитных полей 2 $\leq B_p \leq$ 7 кГс. Расчеты проводились для двух видов распределения температуры с глубиной: стандартный химический состав и стандартная зависимость $T - \tau$ в атмосфере, полученная в работе Shibahashi & Saio (1985); и зависимость $T - \tau$ для HD 24712, где наблюдается температурный подъем на оптических глубинах log $\tau_{5000} \sim -3.5$ (Рис. 4.7). Расчеты проводились с солнечным содержанием гелия и с дефицитом гелия в атмосфере магнитных звезд, который следует из диффузионных расчетов. Пульсационная модель должна воспроизвести набор частот, наблюдаемых в HD 24712. Этот набор включает 8 частот, полученных по фотометрии (Kurtz et al., 2005), а также 2 дополнительные частоты, полученные по анализу лучевых скоростей в работе Mkrtichian & Hatzes (2005). На Рис. 4.8 показан расчет частот пульсаций в зависимости от величины магнитного поля для одной из моделей, наилучшим образом согласующийся с наблюдениями.

Из Рис. 4.8 видно, что теория предсказывает согласие с наблюдениями при величине магнитного поля B_p=4.9 кГс, что несколько больше, чем наблюдаемая величина поля. Во всех остальных моделях необходима еще большая величина поля для достижения согласия теоретических и наблюдаемых частот. Таким образом, наблюдаемый спектр частот в атмосфере HD 24712 может быть описан в рамках модели неадиабатических осесимметричных пульсаций в атмосферах звезд с магнитным полем. Следует отметить, что для описания спектра частот практически не имеет значения форма распределения $T - \tau$. Однако, форма распределения $T - \tau$ оказывает значительное влияние на распределение амплитуд и фаз пульсаций с глубиной атмосферы. На Рис. 4.9 представлено сравнение наблюдаемых распределений амплитуд и фаз пульсаций с теоретическими, рассчтанными для моделей с дефицитом гелия и с разной зависимостью $T - \tau$. Модель AD165(4.9 кГс) рассчитана с $T - \tau$, имеющей температурный скачок; модель SD165(5.4 кГс) рассчитана со стандартным распределением $T - \tau$. На Рис. 4.9 показана также модель AD175z25(5.1 кГс) с избытком тяжелых элементов. Хотя эта модель дает даже несколько лучшее согласие с наблюдениями, она требует бо́льшей напряженности поля. Модельные расчеты показывают, что пульсации в HD 24712 могут быть объяснены совокупностью магнитоакустических колебаний в квадрупольной ($\ell=2$ - основная частота f4, а также f2, f6,f7 и fm2) и дипольной $(\ell=1$ - частоты f1, f3, f5 и fm1) модах. Частота f8 соответствует колебанию в моде с $\ell=3$.

Модельные расчеты не предсказывают наблюдаемого уменьшения амплитуды лучевых скоростей выше $\log \tau_{5000} \sim -5$. Это может быть вызвано эффектами нелинейной диссипации, или же значительным изменением плотности из-за химической стратифика-

Рис. 4.8: Наблюдаемые частоты пульсаций в HD 24712 (левая панель) и теоретические частоты в зависимости от величины напряженности магнитного поля на полюсе диполя B_p для наилучшей модели из серии моделей с дефицитом гелия и распределением $T - \tau$ для HD 24712(серия AD165, 1.65 - масса звезды в ед. массы Солнца). Наблюдаемые частоты [f1–f8] взяты из Kurtz et al. (2005) и показаны сплошными линиями. Точечные линии показывают дополнительные частоты (fm1 and fm2) из работы Mkrtichian & Hatzes (2005) по анализу лучевых скоростей, амплитуда которых масштабирована по амплитуде фотометрических частот. На средней узкой панели показано частотное решение в отсутствии магнитного поля. Горизонтальные точечные линии на левой панели отмечают положение наблюдаемых частот. Теоретические частоты для различных величин собственных значениий ℓ сферических гармоник показаны разными символами, приведенными на верхней части рисунка. Там же приведены параметры модели.

Рис. 4.9: Сравнение наблюдаемых и теоретических распределений фаз (верхняя панель) и амплитуд (нижняя панель) RV изменений для основной частоты f4 (P_{puls} =6.125 мин). Для элементов Y и Fe показаны фазы, отличающиеся на один цикл. Теоретические распределения для моды с $\ell = 2$, полученные с разными моделями, показаны сплошной (AD165(4.9 кГс)), штриховой (SD165(5.4 кГс)) и точечной (AAD175z25(5.1 кГс)) линиями. При расчетах принималась модель диполя с углами (i, β) = (137°, 150°) (Bagnulo et al., 1995).

ции, которое не учитывалось в модельных расчетах. В расчетах также принималось однородное распределение элементов по поверхности звезды, которое таковым не является. Элементы Y, Pr, Nd концентрируются в больших пятнах, расположенных ближе к магнитному полюсу, тогда как Fe концентрируется в районе магнитного экватора (Lüftinger et al., 2010). Наличие пятен может служить дополнительным пространственным фильтром для пульсаций (Mkrtichian, 1994).

Таким образом, теоретическое моделирование пульсаций в атмосфере HD 24712 подтверждает полученное нами из наблюдений распространение пульсаций в виде бегущей наружу волны. Наблюдаемые в HD 24712 частоты больше, чем критическое значение модельных частот, соответствующее колебаниям типа стоячих волн.

Хотя представленная пульсационная модель адекватно описывает наблюдаемые пульсационные характеристики и частоты, ни одна из этих частот не возбуждается; все моды являются затухающими. Общепринятым механизмом возбуждения акустических колебаний в высоких обертонах, наблюдаемых в гоАр звездах, является κ -механизм в зоне ионизации водорода (Cunha, 2002, и ссылки внутри статьи). Очевидно, энергии этого механизма недостаточно для возбуждения сверхкритических частот в HD 24712. Такая же картина получается при моделировании других холодных пульсирующих звезд, HD 101065 (Mkrtichian et al., 2008) и HD 134214 (Saio et al., 2012). Необходимо искать новые механизмы возбуждения пульсаций в холодных гоАр звездах.

4.4. Выводы.

В главе IV рассмотрены атмосферы пульсирующих Ар (roAp) звезд. Представлены результаты детального атмосферно-пульсационного моделирования roAp звезды HD 24712 (DO Eri). Показано, что амплитуда пульсаций зависит от элемента/иона, по линиям которого проводятся измерения. Проведен стратификационный анализ атмосферы звезды. Полученное эмпирическое распределение элементов по глубине было использовано в итерационном расчете модели атмосферы по программе LLmodels. Рассчитаны глубины образования линий в химически стратифицированной атмосфере и показано, что амплитуда и фаза пульсаций растет в верхние слои атмосферы. Предложенная модель распространения пульсационной волны в слоистой атмосфере магнитных пекулярных звезд была подтверждена теоретическими расчетами пульсаций. Эта модель объясняет наблюдаемые пульсационные характеристики не только HD 24712, но и большинства других холодных гоАр звезд. Однако, энергии *к*-механизма в зоне ионизации водорода, рассматриваемого в качестве основного механизма возбуждения акустических колебаний в высоких обертонах, недостаточно, чтобы возбудить колебания в наблюдаемом диапазоне частот как в атмосфере HD 24712, так и в атмосферах некоторых других холодных гоАр звезд.

Заключение

В представленной диссертации проведено детальное исследование химической структуры атмосфер магнитных пекулярных звезд и построение модели, адекватно объясняющей наблюдаемые спектральные особенности этих звезд (профили спектральных линий, распределение энергии в спектрах, пульсационные характеристики спектральных линий). Спектральный анализ базировался на спектрах звезд, полученных с современными спектрографами высокого разрешения ($R \sim 80\,000 - 100\,000$) и имеющих высокую фотометрическую точности (S/N \geq 200-300). Детальное исследование таких спектров возможно только при наличии соответствующих по точности данных об атомных параметрах спектральных линий. Поэтому, сбор, классификация, критический анализ данных и создание на этой основе базы данных атомных параметров спектральных линий VALD являются существенной частью диссертации. Представлено детальное описание базы данных VALD, широко используемое в диссертации. Небольшая часть данных этой базы (вероятности переходов линий Nd III, Ga II) была получена с участием автора диссертации. Показана важная роль магнитных пекулярных звезд как природных лабораторий для уточнения расчетных и экспериментально измеренных параметров спектральных линий тяжелых элементов: Ga, редкоземельных элементов (Nd). Следует подчеркнуть, что программные пакеты спектрального синтеза, позволяющие проводить анализ спектров с учетом магнитного поля, неоднородного распределения элементов с глубиной, используют данные базы VALD.

Представлен список исследованных звезд с указанием инструментов, на которых были получены спектральные наблюдения. Дано краткое описание методов обработки наблюдений. По найденным параметрам вычислялись модели атмосфер для каждой исследуемой звезды и исследовался ее химический состав. Анализ содержаний элементов группы железа для звезд программы показал наличие сильной корреляции содержания некоторых элементов, например, Сг и Fe, с температурой. Полученные эмпирически температурные зависимости содержаний Сг и Fe хорошо согласуются с результатами расчетов самосогласованных диффузионных моделей атмосфер и дают наблюдательное подтверждение преобладающей роли процесса диффузионного разделения элементов под совместным действием радиационного ускорения и гравитационного осаждения, впервые предложенного (Michaud, 1970), в создание наблюдаемых аномалий. Исследование редкоземельных элементов (REE) показало, что у холодных звезд, относящихся к группе пульсирующих магнитных пекулярных звезд (roAp), наблюдается большое различие в содержаниях, определенных отдельно по линиям первых и вторых ионов. Это различие составляет 1.5 - 2 порядка и не может быть объяснено ошибками в определении параметров атмосферы. REE-аномалии отличают группу roAp от непульсирующих Ap звезд, у которых аномалии, если и наблюдаются, то не превышают одного порядка. Предсказаны пульсации в атмосферах нескольких звезд, найденные впоследствии по анализу изменений лучевых скоростей.

Для выборки Ар-звезд в диапазоне эффективных температур 7200–12000 К представлены результаты анализа распределения химических элементов Si, Ca, Cr, Fe, Pr, Nd по глубине атмосферы (стратификация) по наблюдаемым профилям спектральных линий. Полученные распределения элементов Cr и Fe по глубине атмосферы достаточно хорошо согласуются с теоретическими диффузионными расчетами для этих элементов в самосогласованных моделях атмосфер. Элементы железного пика концентрируются вблизи фотосферы в холодных звездах с резким уменьшением содержания на 3-4 порядка в сторону верхних слоев атмосферы. С ростом эффективной температуры граница скачка сдвигается в верхние слои, а градиент содержания элемента уменьшается, приводя к повышенному на 1-3 порядка содержанию элемента в области формирования оптических линий по сравнению с солнечным обилием.

Для 23 звезд с температурами 6600 – 11500 К и магнитными полями 1 – 16.3 кГ была исследована линия Са II λ 8498 инфракрасного триплета Са II. Получена эмпирическая модель дифференциального распределения изотопов Са в атмосферах Ар-звезд, согласно которой наиболее обильный в солнечной системе легкий изотоп ⁴⁰Са концентрируется ближе к фотосферным слоям, тогда как тяжелые изотопы ⁴⁶Са+⁴⁸Са выталкиваются в верхние слои атмосферы. С ростом магнитного поля звезды граница раздела изотопов исчезает. Предложено объяснение изотопного разделения Са, как результата светоиндуцированного дрейфа изотопов. Причиной дрейфа является анизотропия поля излучения в пределах профиля слабой линии примесного изотопа ⁴⁸Са, расположенного в крыле сильной линии основного изотопа ⁴⁰Са.

Для редкоземельных элементов Pr и Nd предложена эмпирическая модель распределения в атмосфере, основанная на неЛТР- анализе образования линий. Показано, что наблюдаемые REE-аномалии могут быть объяснены, если эти элементы сконцентрированы в верхних слоях атмосфер Ар-звезд. Результаты исследований стратификации химических элементов позволяют выдвинуть следующую модель химической структуры магнитных пекулярных звезд: атмосфера носит слоистый характер (cake-like) с концентрацией разных групп элементов на разных оптических глубинах. Эта модель получила подтверждение при анализе пульсаций в гоАр звездах. Показано, что амплитуда пульсаций зависит от элемента/иона, по линиям которого проводятся измерения.

Представлены результаты детального атмосферно-пульсационного моделирования roAp звезды HD 24712 (DO Eri). Проведен стратификационный анализ атмосферы. Рассчитаны глубины образования линий в химически стратифицированной атмосфере и показано, что амплитуда и фаза пульсаций увеличивается в верхние слои атмосферы. Предложенная модель распространения пульсационной волны в слоистой атмосфере магнитных пекулярных звезд объясняет наблюдаемые пульсационные характеристики не только HD 24712, но и большинства других гоАр-звезд.

Литература

- Achmad I., de Jager C., and Nieuwenhuijzen H. "The contribution function for the depth of formation of lines in a stellar atmosphere". Astron. Astrophys. 250, 445 (1991).
- Adelman S.J. "The Peculiar A Star HD 200311: a Photographic Region Line-Identification Study". Astrophys. J. Suppl. Ser. 28, 51 (1974)
- Adelman S.J. "Elemental abundance analyses with DAO spectrograms. VII The late normal B stars Pi Ceti, 134 Tauri, 21 Aquilae, and Nu Capricorni and the use of RETICON spectra". MNRAS 252, 116 (1991).
- Adelman S.J. "Elemental abundance analysis with DAO spectrograms. XIII. The superficially normal early A-type stars 68 Tauri, 21 Lyncis and Alpha Draconis". MNRAS 271, 355 (1994).
- Adelman S.J. "Elemental abundance analyses with DAO spectrograms XV. The superficially normal late B-type and early A-type stars Merak, pi Draconis and kappa Cephei". MNRAS 280, 130 (1996).
- Adelman S.J. "Elemental abundance analyses with DAO spectrograms XIX. The superficially normal B stars zeta Draconis, epsilon Lyrae, 8 Cygni and 22 Cygni". MNRAS 296, 856 (1998).
- Adelman S.J. "Elemental abundance analyses with DAO spectrograms XXII. The B9-A3 stars λ Ursae Majoris, 59 Herculis, 14 Cygni and 29 Cygni". MNRAS **310**, 146 (1999).
- Adelman S.J., and Albayrak B. "Elemental abundance analyses with DAO spectrograms XX. The early A stars epsilon Serpentis, 29 Vulpeculae and sigma Aquarii". MNRAS 300, 359 (1998).
- Adelman S.J., Bidelman W.P., and Pyper D.M. "The peculiar A star Gamma Equulei A line identification study of λλ 3086-3807". Astrophys. J. Suppl. Ser. 40, 371 (1979)

- Adelman S.J., Caliskan H., Kocer D., and Bolcal, C. "Elemental abundance analyses with DAO spectrograms - XVI. The normal F main-sequence stars sigma Bootis, theta Cygni and iota Piscum, and the Am stars 15 Vulpeculae and 32 Aquarii". MNRAS 288, 470 (1997)
- Adelman S.J., Caliskan H., Cay T., Kocer D., and Gokmen Tektunali H. "Elemental abundance analyses with DAO spectrograms - XXI. The hot metallic-lined stars 60 Leonis and 6 Lyrae". MNRAS 305, 391 (1999).
- Adelman S.J., Caliskan H., Kocer D., Cay I.H., and Gokmen Tektunali, H. "Elemental abundance analyses with DAO spectrograms - XXIII. The superficially normal stars 28 And (A7III) and 99 Her (F7V)". MNRAS 316, 514 (2000).
- Adelman S.J., Caliskan H., Kocer D., et al. "Elemental abundance analyses with DAO spectrograms. XXV. The superficially normal B and A stars alpha Draconis, tau Herculis, gamma Lyrae, and HR 7926". Astron. Astrophys. **371**, 1078 (2001).
- Adelman S.J., and Davis Philip A.G. "Elemental abundances of the B and A stars. 2: Gamma Geminorum, HD 60825, 7 Sextantis, HR 4817, and HR 5780". PASP 106, 1239 (1994).
- Adelman S.J., and Davis Philip A.G. "Elemental abundances of the B and A stars III. Gamma Geminorum, HR 1397, HR 2154, HD 60825 and 7 Sextantis". MNRAS 282, 1181 (1996)
- Adelman S.J., Pyper D.M., Shore S.N., White R.E., and Warren W.H., Jr. "A catalog of stellar spectrophotometry". Astron. Astrophys. Suppl. Ser. 81, 221 (1989).
- Aikman G.C.L., Cowley C.R., and Crosswhite H.M. "Dysprosium III lines in the spectra of peculiar A and B stars". Astrophys. J. 232, 812 (1979).
- Aldenius M. Master Thesis, Depart. of Physics, Univ. of Lund (2001).
- Alecian G., and Stift M.J. "Radiative accelerations in stars: The effects of magnetic polarisation revisited". Astron. Astrophys. 416, 703 (2004).
- Alecian, G., Stift M.J. "Bi-dimensional element stratifications computed for magnetic Ap star atmospheres". Astron. Astrophys. 516, A53 (2010).
- Allende Prieto C., Asplund M., Garćia Lopez R.J., and Lambert D. "Signatures of Convection in the Spectrum of Procyon: Fundamental Parameters and Iron Abundance". Astrophys. J. 567, 544 (2002).

- Alentiev D., Kochukhov O., Ryabchikova T., et al. "Discovery of the longest period rapidly oscillating Ap star HD 177765". MNRAS 421, L82 (2012).
- Allen C.W. "Astrophysical Quantities". (Athlone Press) (1973)
- Andersen T., Sorensen G. "Systematic Study of Atomic Lifetimes in Gallium, Indium, and Thallium Measured by the Beam-Foil Technique". Phys. Rev. A 5, 2447 (1972).
- Armstrong N. M. R., Rosner S. D., and Holt R. A. "Measurements of hyperfine structure in ⁵¹V II". Phys. Scr. 84, 055301 (2011)
- Aurière M., Wade G.A., Silvester J. et al. "Weak magnetic fields in Ap/Bp stars. Evidence for a dipole field lower limit and a tentative interpretation of the magnetic dichotomy". Astron. Astrophys. 475, 1053 (2007).
- Azarov V.I. "Formal approach to the solution of the complex-spectra identification problem. 2. Implementation". Phys. Scripta 48, 656 (1993).
- Babcock H. W. "The 34-Kilogauss Magnetic Field of HD 215441". Astrophys. J. **132**, 521 (1960).
- Babel J. "Magnetically confined wind on the Ap star 53 Camelopardalis?". Astron. Astrophys. 258, 449 (1992).
- Babel J. "Detection of calcium abundance stratification in Ap stars". Astron. Astrophys. 283, 189 (1994).
- Bagnulo S., Landi Degl'Innocenti E., Landolfi M., and Leroy J.L. "Linear polarimetry of Ap stars. 3: A diagnostic method for the magnetic structure of rotating stars". Astron. Astrophys. 295, 459 (2003).
- Bagnulo S., Landstreet J.D., Lo Curto G., Szeifert T., and Wade G.A. "Discovery of a 14.5 kG magnetic field in the NGC 2516 star HD 66318". Astron. Astrophys. 645, 167 (2003).
- Balona L. A. "Effective Temperature Bolometric Correction and Mass Calibration of O-F Stars". MNRAS, 268, 119 (1994)
- Barklem P.S., Piskunov N., and O'Mara B.J. "Self-broadening in Balmer line wing formation in stellar atmospheres". Astron. Astrophys. 363, 1091 (2000).
- Bergemann M., Pickering J. C., and Gehren T. "NLTE analysis of CoI/CoII lines in spectra of cool stars with new laboratory hyperfine splitting constants". MNRAS **401**, 1334 (2010)
- Bessell M. S., Castelli F., and Plez B. "Model atmospheres broad-band colors, bolometric corrections and temperature calibrations for O - M stars". Astron. Astrophys., 333, 231 (1998)
- Blackwell-Whitehead R. J., Pickering J. C., Pearse O., and Nave J. "Hyperfine Structure Measurements of Neutral Manganese with Fourier Transform Spectroscopy". Astrophys. J. Suppl. 157, 402 (2005)
- Bolcal C., Kocer D., and Duzgelen A. "A model atmosphere analysis of HD 25823". Astrophys. Space Sci. 139, 295 (1987).
- Bolcal C., Kocer D., Koktay T., and Güzel T. "A model-atmosphere analysis of AP star HD 26385". Astrophys. Space Sci. 185, 237 (1991).
- Bonifacio P., Castelli F., and Hack M. "The field horizontal-branch B-type star Feige 86". Astron. Astrophys. Suppl. Ser. 110, 441 (1995)
- Bord D.J. "Ab initio calculations of oscillator strengths and Landé factors for Nd III". Astron. Astrophys. Suppl. Ser. **144**, 517 (2000)
- Bord D.J., Cowley C.R., and Norquist P.L. "Oscillator strength calculations in Ce III: application to HD 200311". MNRAS **284**, 869 (1997)
- Burki G. et al. 2005, GENEVA photometric database, Geneva Observatory, http://obswww.unige.ch/gcpd/ph13.html
- Butler K., and Giddings J. Newsletter on the analysis of astronomical spectra, No.9, University of London (1985).
- Caliskan H., and Adelman S.J. "Elemental abundance analyses with DAO spectrograms XVII. The superficially normal early A stars 2 Lyncis, omicron Ursa Majoris and phi Aquilae". MNRAS 288, 501 (1997).
- Castelli F., and Hubrig S. "The Ca II infrared triplet as indicator of anomalous Ca isotopic mixture in HgMn stars". Astron. Astrophys. 421, L1 (2004)

- Collado A., and López-García Z. "Chemical Abundances of the magnetic CP star HD 168733". Rev. Mex. Astron. Astrof. 45, 95 (2009).
- Cowan R.D. The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, CA, USA (1981)
- Cowley C.R. "An approximate Stark broadening formula for use in spectrum synthesis". Observatory **91**, 139 (1971).
- Cowley C.R., and Bord D.J. "The Third Spectrum of Neodymium: Applications to HR 6870 and Gamma Equulei". In *The Scientific Impact of the Goddard High Resolution Spectrograph*. (Eds.: J. C. Brandt, T.B. Ake, and C.C. Peterson), ASP Conf. Ser. **143**, 346 (1998).
- Cowley C. R., and Hubrig, S. "The calcium isotopic anomaly in magnetic CP stars". Astron. Astrophys. **432**, L21 (2005)
- Cowley C. R., Hubrig S., Castelli F., González J. F., and Wolff B. "Heavy calcium in CP stars". MNRAS **377**, 157 (2007).
- Cowley C.R., Ryabchikova T., Kupka F., et al. "Abundances in Przybylski's star". MNRAS **317**, 299 (2000).
- Cunha M.S. "A theoretical instability strip for rapidly oscillating Ap stars". MNRAS **333**, 47 (2002).
- Dimitrijević M.S., and Sahal-Bréchot S. "Stark broadening of Ca II spectral lines". JQSRT **49**, 157 (1993).
- Drawin H.-W. "Zur formelmässigen Darstellung der Ionisierungsquerschnitte gegenüber Elektronenstoss". Z. Phys. **164**, 513 (1961)
- Elkin V.G., Riley J. D., Cunha M. S., Kurtz D. W., and Mathys G. "The discovery of a luminous, rapidly oscillating Ap star, HD 116114, with a 21-minute pulsation period". MNRAS **358**, 665 (2005).
- Engels D., Sherwood W. A., Wamsteker W., and Schultz G. V. "Infrared Observations of Southern Bright Stars". Astron. Astrophys. Suppl. Ser. 45, 5 (1981).

- Fossati L., Bagnulo S., Monier R., Khan S.A., Kochukhov O., Landstreet J., Wade G., and Weiss, W. "Late stages of the evolution of A-type stars on the main sequence: comparison between observed chemical abundances and diffusion models for 8 Am stars of the Praesepe cluster". Astron. Astrophys. 476, 911 (2007).
- Fossati L., Ryabchikova T., Bagnulo S., et al. "The chemical abundance analysis of normal early A- and late B-type stars". Astron. Astrophys. **503**, 945 (2009).
- Fossati L., Ryabchikova T., Shulyak D. V., et al. "The accuracy of stellar atmospheric parameter determinations: a case study with HD 32115 and HD 37594". MNRAS, **417**, 495 (2011).
- Fuhrmann K., Pfeiffer M., Frank C., Reetz J., and Gehren T. "The surface gravities of cool dwarf stars revisited". Astron. Astrophys. **323**, 909 (1997).
- Gelbmann M. "Chemical composition and fundamental parameters of roAp stars". Contrib. Astron. Obs. Scalnaté Pleso, 27, 280 (1998).
- Gelbmann M., Kupka F., Weiss, W.W., and Mathys, G. "Abundance analysis of roAp stars. II. HD 203932". Astron. Astrophys. **319**, 630 (1997).
- Gelbmann M., Ryabchikova T.A., Weiss W.W., et al. "Abundance analysis of roAp stars. V. HD 166473". Astron. Astrophys. 356, 200 (2000).
- Ginibre A. "Fine and hyperfine structures of singly ionised praseodymium: II. parametric interpretation of fine and hyperfine structures for the even levels of singly ionised praseodymium". Phys. Scripta **39**, 710 (1989)
- Hatzes A.P., and Mcrtichian D.E. "Radial velocity variations in pulsating Ap stars III. The discovery of 16.21-min oscillations in β CrB". MNRAS, **351**, 663 (2004).
- Hauck B., and Künzli M. "Photometric Calibrations of the Effective Temperature". Baltic Astron., 5, 303 (1996)
- Hauck B., and Mermilliod M. " $uvby\beta$ photoelectric photometric catalogue". Astron. Astrophys. Suppl. Ser. **129**, 431 (1998)
- Hauschildt P.H., Baron E., and Allard F. "Parallel Implementation of the PHOENIX Generalized Stellar Atmosphere Program". Astrophys. J. 483, 390 (1997).

- Hill G.M., and Landstreet J.D. "Compositional Differences among the A-Type Stars Part OneSix Narrowlined Stars". Astron. Astrophys. 276, 142 (1993).
- Holt R. A., Scholl T. J., and Rosner, S. D. "Measurements of hyperfine structure in Mn II". MNRAS 306, 107 (1999)
- Horne J.H., and Baliunas S.L. "A prescription for period analysis of unevenly sampled time series". Astrophys. J. 302, 757 (1986).
- Hubrig S., Castelli F., de Silva G., et al. "A high-resolution study of isotopic composition and chemical abundances of blue horizontal branch stars in the globular clusters NGC 6397 and NGC 6752". Astron. Astrophys. 499, 865 (2009).
- Hui-Bon-Hoa A., LeBlanc F., and Hauschildt P.H. "Diffusion in the Atmospheres of Blue Horizontal-Branch Stars". Astrophys. J. 535, L43 (2000).
- Jugaku J., Sargent W.L.W., and Greenstein J.L. "An Abundance Analysis of 3 Centauri"Astrophys. J. 134, 783 (1961).
- Kaiser A. "Determination of Fundamental Parameters with Strömgren Photometry". In Astrophysics of Variable Stars. (Eds.: C. Sterken, and C. Aerts), ASP Conf. Ser., 349, 257 (2006).
- Kanaan A. and Hatzes A. P. "Pulsations and Radial Velocity Variations in Pulsating Ap Stars.I. Analysis of gamma Equulei". Astrophys. J. 503, 848 (1998)
- Kato K. "Abundance Analysis of the Silicon Star HR 6958". PASJ 55, 1133 (2003).
- Kocer D., Adelman S.J., Caliskan H., Gulliver A.F., and Gokmen Tektunali H. "Elemental abundance analyses with DAO spectrograms. XXVII. The superficially normal stars theta And (A2 IV), epsilon Del (B6 III), epsilon Aqr (A1.5 V), and iota And (B9 V)". Astron. Astrophys. 406, 975 (2003).
- Kochukhov O. "Atmospheric parameters and chemical composition of the ultra-cool roAp star HD 213637". Astron. Astrophys. 404, 669 (2003).
- Kochukhov O. "Spectrum synthesis for magnetic, chemically stratified stellar atmospheres". In Magnetic Stars, eds. I.I. Romanyuk and D.O.Kudryavtsev, p.109 (2007).

- Kochukhov O., Landstreet J. D., Ryabchikova T., Weiss W. W., and Kupka F. "Discovery of rapid radial velocity variations in the roAp star 10 Aql and possible pulsations of β CrB". MNRAS **337**, L1 (2002a)
- Kochukhov O., Piskunov N., Ilyin I., Ilyina S., and Tuominen I. "Doppler Imaging of stellar magnetic fields. III. Abundance distribution and magnetic field geometry of α²CVn". Astron. Astrophys. **389**, 420 (2002b).
- Kochukhov O., Ryabchikova T. "Time-resolved spectroscopy of the roAp star gamma Equ". Astron. Astrophys. **374**, 615 (2001).
- Kochukhov O., Ryabchikova T., and Piskunov N. "No magnetic field variation with pulsation phase in the roAp star γ Equulei". Astron. Astrophys. **415**, L13 (2004)
- Kochukhov O., Tsymbal V., Ryabchikova T., Makaganyk V., and Bagnulo S. "Chemical stratification in the atmosphere of Ap star HD 133792. Regularized solution of the vertical inversion problem". Astron. Astrophys. 460, 831 (2006).
- Kochukhov O., Ryabchikova T., Bagnulo S. and Lo Curto G. "The discovery of high-amplitude, 10.9-minute oscillations in the cool magnetic Ap star HD 115226". Astron. Astrophys. 479, L29 (2008)
- Kochukhov O., Bagnulo S., Lo Curto G. and Ryabchikova T. "Discovery of very low amplitude 9-minute multiperiodic pulsations in the magnetic Ap star HD 75445". Astron. Astrophys. 493, L45 (2009a)
- Kochukhov O., Shulyak D., and Ryabchikova T. "A self-consistent empirical model atmosphere, abundance and stratification analysis of the benchmark roAp star α Circini". Astron. Astrophys. **499**, 851 (2009b)
- Kudryavtsev D.O. "Reduction of echelle and long-slit Zeeman spectra in MIDAS". In Magnetic fields of chemically peculiar and related stars, Proc.of the International Conf., (eds. Yu.V. Glagolevskij, I.I.Romanyuk, Moscow, RAS, 2000), p. 84 (2000).
- Künzli M., North,P., Kurucz R. L., and Nicolet, B. "A calibration of Geneva photometry for B to G stars in terms of T_{eff}, logG and [M/H]". Astron. Astrophys. Suppl. Ser. **122**, 51 (1997).

- Kupka F., Ryabchikova T.A., Weiss W.W. et al. "Abundance analysis of roAp stars. I. α Circini". Astron. Astrophys. **308**, 885 (1996).
- Kupka F., Piskunov N., Ryabchikova T.A., Stempels H.S., and Weiss W.W. "VALD-2: Progress of the Vienna Atomic Line Data Base". Astron. Astrophys. Suppl. Ser. 138, 119 (1999).
- Kupka F., Paunzen E., Iliev I.Kh., and Maitzen H.M. "The 5200-Å flux depression of chemically peculiar stars II. The cool chemically peculiar and λ Bootis stars". MNRAS **352**, 863 (2004).
- Kurtz D.W. "12.15 Minute Light Variations in Przybylski's Star, HD 101065". IBVS No.1436, 1 (1978)
- Kurtz D.W. "Rapidly oscillating Ap stars". MNRAS 200, 807 (1982).
- Kurtz D.W., Cameron C., Cunha M.S. et al. "Pushing the ground-based limit: 14-03bcmag photometric precision with the definitive Whole Earth Telescope asteroseismic data set for the rapidly oscillating Ap star HR1217". MNRAS **358**, 651 (2005).
- Kurtz D.W., Elkin V.G., and Mathys G. "The detection of the very low amplitude 16.2-min pulsation in individual lines of first ionization stage of rare earth elements in the roAp star β CrB". MNRAS **380**, 741 (2007).
- Kurtz D.W., and Martinez P. "Observing roAp Stars with WET: A Primer". Baltic Astron., 9, 253 (2000).
- Kurucz R.L. "ATLAS9 Stellar Atmosphere Programs and 2 km/s grid". CD-ROM 13, Smithsonian Astrophys. Obs. (1993a).
- Kurucz R.L. "A New Opacity-Sampling Model Atmosphere Program for Arbitrary Abundances". In *Peculiar versus Normal Phenomena in A-type and Related Stars*, Proceedings of the IAU Colloquium No. 138, Trieste, p.87 (1993b).
- Kurucz R.L. "Atomic Data for Opacity Calculations". CD-ROM 1, Smithsonian Astrophys. Obs. (1993c).
- LeBlanc F., Monin D. "Modelling of stratified atmospheres of CP-stars". In *The A-Star Puzzle*, Proc. IAU Symp. No.224, (eds. J. Zverko, W.W. Weiss, J. Žižňovský, S.J. Adelman, Cambridge University Press, 2004) p. 193 (2004).

- LeBlanc F., Monin D., Hui-Bon-Hoa A., and Hauschildt P. H. "Stellar model atmospheres with abundance stratification". Astron. Astrophys. **495**, 937 (2009).
- Leone F., Catalano F.A., and Manfrè M. "The chemically peculiar star HD 37808". Astron. Astrophys. 279, 167 (1993).
- Lodders K. "Solar System Abundances of the Elements". In Principles and Perspectives in Cosmochemistry, Astrophysics and Space Science Proceedings, Springer-Verlag Berlin Heidelberg, p. 379-417 (2010).
- Lopez-Garcia Z., and Adelman S.J. "Elemental abundance studies of CP stars: The silicon star HD 43819 and the CP star HD 147550". Astron. Astrophys. Suppl. Ser. **107**, 353 (1994).
- Lopez-Garcia Z., and Adelman S.J. "Elemental abundance studies of CP stars. II. The silicon stars HD 133029 and HD 192913". Astron. Astrophys. Suppl. Ser. 137, 227 (1999).
- Lopez-Garcia Z., Adelman S.J., and Pintado O. I. "Elemental abundance studies of CP stars. III. The magnetic CP stars alpha Scl and HD 170973". Astron. Astrophys. 367, 859 (2001).
- Lucke P.B. "The distribution of color excesses and interstellar reddening material in the solar neighborhood". Astron. Astrophys. 64, 367 (1978).
- Lüftinger T., Kochukhov O., Ryabchikova T., et al. "Magnetic Doppler imaging of the roAp star HD 24712". Astron. Astrophys. **509**, 71 (2010).
- Malanushenko V., Savanov I., Ryabchikova T. "Rapid radial velocity variations in roAp star gamma Equ from lines of NdIII and PrIII". IBVS No.4650, 1 (1998)
- Martin W.C., Zalubas R., and Hagan L. "Atomic energy levels The rare-Earth elements". NSRDS-NBS 60, Washington (1978)
- Martinez P. "The Cape Oscillating Ap Star Survey". Ph.D. Thesis, University of Cape Town, SA (1993).
- Mashonkina L., Ryabchikova T., Ryabtsev A., and Kildiyarova R. "Non-LTE line formation for Pr II and Pr III in A and Ap stars". Astron. Astrophys. 495, 297 (2009).
- Mashonkina L., Ryabchikova T., and Ryabtsev A. "NLTE ionization equilibrium of Nd II and Nd III in cool A and Ap stars". Astron. Astrophys. 441, 309 (2005).

- Mashonkina L., Zhao G. T., Gehren T., et al. "Non-LTE line formation for heavy elements in four very metal-poor stars". Astron. Astrophys. 478, 529 (2008).
- Mathys G., and Cowley C.R. "The third spectrum of praseodymium in magnetic Ap stars". Astron. Astrophys. **253**, 199 (1992).
- Mathys G., and Lanz T. "Ap stars with resolved magnetically split lines". Astron. Astrophys. **256**, 169 (1992).
- Matthews J.M., Wehlau W.H., Walker G.A.H., and Yang, S. "Detection of radial velocity variations in the rapidly oscillating Ap star HR 1217". Astrophys. J. **324**, 1099 (1988).
- Mkrtichian D.E. "Star as a sun' observations in seismology of distant stars". Solar Phys. 152, 275 (1994).
- Mkrtichian D.E., and Hatzes A.P. "Radial velocity variations in pulsating Ap stars. IV. First results on HR 1217". Astron. Astrophys. **430**, 263 (2005).
- Mkrtichian D. E., Hatzes A. P., Saio H., and Shobbrook R. R. "The detection of the rich p-mode spectrum and asteroseismology of Przybylski's star". Astron. Astrophys. **490**, 1109 (2008).
- Michaud G. "Diffusion Processes in Peculiar A Stars". Astrophys. J. 160, 641 (1970).
- Michaud G., Charland I., Vauclair S., and Vauclair G. "Diffusion in main-sequence stars -Radiation forces, time scales, anomalies". Astrophys. J. **210**, 447 (1976).
- Michaud G., Mégessier C., and Charland I. "Diffusion models for magnetic Ap-Bp stars". Astrophys. J. 103, 244 (1981).
- Moon T., and Dworetsky M. "Grids for the determination of effective temperature and surface gravity of B, A and F stars using uvby-beta photometry". MNRAS **217**, 305 (1985).
- Napiwotzki R. Schönberner D., and Wenske V. "On the determination of effective temperature and surface gravity of B, A, and F stars using Strömgren $uvby\beta$ photometry". Astron. Astrophys. **268**, 653 (1993).
- Nielsen K., and Wahlgren G.M. "A spectroscopic study of the magnetic CP-star HR 1094". Astron. Astrophys. 356, 146 (2000).

- Nishimura M., Sadakane K., Kato K., Takeda Y., and Mathys G. "Chemical composition of the magnetic B star HR 5049". Astron. Astrophys. 420, 673 (2004).
- Nörtershäuser W., Blaum K., Icker P., et al. "Isotope shifts and hyperfine structure in the transitions in calcium II". Eur. Phys. J. **D2**, 33 (1998).
- Perry C.L., Johnston L., and Crawford D.L. "A photometric map of interstellar reddening within 100 pc". Astron. J. 87, 1751 (1982)
- Pickering, J. C. "Measurements of the Hyperfine Structure of Atomic Energy Levels in Co I". Astrophys. J. Suppl. 107, 811 (1996).
- Pintado O.I., and Adelman S.J. "Elemental abundance analyses with the EBASIM spectrograph of the 2.1-m CASLEO Observatory Telescope. I. The late B and early A stars vec xi Octantis, alpha Sextantis, and 68 Tauri". Astron. Astrophys. 406, 987 (2003).
- Piskunov N. "SYNTH a code for rapid spectral synthesis". In *Stellar Magnetism*, eds. Yu.V. Glagolevskij, I.I.Romanyuk, St.-Petersburg, Nauka, p.92 (1992).
- Piskunov N. E. "Modeling magnetic fields on stars other than the Sun". In 2nd International Workshop on Solar Polarization, eds. K. Nagendra and J. Stenflo, Kluwer Acad. Publ. ASSL, 243, 515 (1999).
- Piskunov N. E., Kupka F., Ryabchikova T. A., Weiss W. W., and Jeffery C. S. "VALD: The Vienna Atomic Line Data Base". Astron. Astrophys. Suppl. Ser. 112, 525 (1995).
- Piskunov N., and Kupka F. "Model Atmospheres with Individualized Abundances". Astrophys. J. 547, 1040 (2001).
- Piskunov N., and Kochukhov, O. "Doppler Imaging of stellar magnetic fields. I. Techniques". Astron. Astrophys. 381, 736 (2002).
- Press, W.H., Teukolsky S.A., Vetterling W.T., and Flannery B.P. Numerical Recipes, Cambridge University Press, Cambridge (1986).
- Raassen A.J.J., and Uylings P.H.M. "On the determination of the solar iron abundance using Fe II lines". Astron. Astrophys. 340, 300 (1998).

- Rufener F. "Catalogue of stars measured in the Geneva Observatory photometric system (fourth edition)". Astron. Astrophys. Suppl. Ser. 78, 469 (1989)
- Ryabchikova T. "Abundance structure of the atmospheres of magnetic CP stars". Contr. Astron. Obs. Skalnaté Pleso **38**, 257 (2008)
- Ryabchikova T.A., Adelman S.J., Weiss W.W., and Kuschnig R. "Abundance analysis of roAp stars. III. γ Equulei". Astron. Astrophys. **322**, 234 (1997a).
- Ryabchikova T., Fossati L., and Shulyak D. "Improved fundamental parameters and LTE abundances of the CoRoT solar-type pulsator HD 49933". Astron. Astrophys. 506, 203 (2009)
- Ryabchikova T., Kildiyarova R., Piskunov N., Heiter U., Fossati L., and Weiss W. W. "A comparative analysis of the laboratory and theoretical transition probabilities of the Fe-peak elements for a new release of VALD". J. Phys. Conf. Ser., 130, 012017 (2008).
- Ryabchikova T., Kochukhov O., Kudryavtsev D., et al. "HD 178892 a cool Ap star with extremely strong magnetic field". Astron. Astrophys. **445**, L47 (2006a).
- Ryabchikova T., Kochukhov O., and Bagnulo S. "Isotopic anomaly and stratification of Ca in magnetic Ap stars". Astron. Astrophys. 480, 811 (2008).
- Ryabchikova T., Kuschnig R., Piskunov N.E., and Pavlova V. "Ap-star mapping: Fe and Cr abundance distribution on the surface of HD 153882". In *Stellar Surface Structure*, Poster Proc. Symp. 176, (ed. K.G. Strassmeier, Wien, 1995), p. 132 (1995).
- Ryabchikova T.A., Landstreet J.D., Gelbmann M.J., et al. "Abundance analysis of roAp stars. IV. HD24712". Astron. Astrophys. **327**, 137 (1997b).
- Ryabchikova T., and Leblanc F. "UV line profiles as a probe for atomic diffusion theory in stellar atmospheres". Astrophys. Sp. Sci. 335, 77 (2011).
- Ryabchikova, T., Leblanc, F., and Shulyak, D. "Modelling the Atmospheres of Peculiar Magnetic Stars". In *Magnetic Stars*, Proc. Int. Conf, eds. I.I Romanuyk abd D.O.Kudryavtsev, p.69-80 (2011)

- Ryabchikova T., Leone, F., and Kochukhov, O. "Abundances and chemical stratification analysis in the atmosphere of Cr-type Ap star HD 204411". Astron. Astrophys. 438, 973 (2005a).
- Ryabchikova T., Nesvacil N., Weiss W.W., Kochukhov O., and Stütz Ch. "The spectroscopic signature of roAp stars". Astron. Astrophys. **423**, 705 (2004a).
- Ryabchikova T., Piskunov N., Savanov I., Kupka F., and Malanushenko V. "Eu III identification and Eu abundance in CP stars". Astron. Astrophys. 343, 229 (1999a).
- Ryabchikova T.A., Piskunov N., Stempels H.C., Kupka F., and Weiss W.W. "The Vienna Atomic Line Data Base a Status Report". Phys. Scr. **T83**, 1962 (1999b).
- Ryabchikova T., Piskunov, N., Kochukhov, O., Tsymbal V., Mittermayer P., and Weiss W.W.
 "Abundance stratification and pulsation in the atmosphere of the roAp star gamma Equulei".
 Astron. Astrophys. 384, 545 (2002).
- Ryabchikova T., Sachkov, M., Weiss, et al. "Pulsation in the atmosphere of the roAp star HD 24712. I. Spectroscopic observations and radial velocity measurements". Astron. Astrophys. 462, 1103 (2007).
- Ryabchikova T.A., Savanov I.S., Hatzes A.P., Weiss, W.W, and Handler, G. "Abundance analyses of roAp stars. VI. 10 Aql and HD 122970". Astron. Astrophys. **357**, 981 (2000).
- Ryabchikova T., Ryabtsev A., Kochukhov O., and Bagnulo S. "Rare-earth elements in the atmosphere of the magnetic chemically peculiar star HD 144897. New classification of the Nd III spectrum". Astron. Astrophys. 456, 329 (2006b).
- Ryabchikova T., Wade G.A., Auriére, M., et al. "Rotational periods of four roAp stars". Astron. Astrophys. **429**, L55 (2005b).
- Ryabchikova T., Wade G.A., and LeBlanc F. "Observational Evidence for the Stratification of Chemical Abundances in Stellar Atmospheres". In *Modelling of Stellar Atmospheres*, IAU Symp. No.210, (eds. N.Piskunov, W.W.Weiss, D.F.Gray, PASP, 2003), p.301.
- Ryabchikova T., Leone, F., Kochukhov, O., and Bagnulo S. "Element stratification in the atmospheres of two weakly magnetic Cr-type Ap stars". In *The A-Star Puzzle*, Proc.

IAU Symp. No.224, eds. J. Zverko, W.W. Weiss, J. Žižňovský, S.J. Adelman, Cambridge University Press, 580 (2004b).

- Rybicki G.B., and Hummer D.G. "An accelerated lambda iteration method for multilevel radiative transfer. I - Non-overlapping lines with background continuum". Astron. Astrophys. 245, 171 (1991).
- Rybicki G.B., and Hummer D.G. "An accelerated lambda iteration method for multilevel radiative transfer. II - Overlapping transitions with full continuum". Astron. Astrophys. 262, 209 (1992).
- Saio H. "A non-adiabatic analysis for axisymmetric pulsations of magnetic stars". MNRAS 360, 1729 (2005).
- Saio H., Gruberbauer M., Weiss W. W., Matthews J. M., and Ryabchikova T. "Pulsation models for the roAp star HD 134214". MNRAS 420, 283 (2012).
- Saio H., Ryabchikova T., and Sachkov M. "Pulsations in the atmosphere of the roAp star HD24712 - II. Theoretical models". MNRAS **403**, 1729 (2010).
- Shibahashi H., and Saio H. "Rapid oscillations of Ap stars". PASJ 37, 245 (1985).
- Schnabel R., Schultz-Johanning M., and Kock M. "Fe II lifetimes and transition probabilities". Astron. Astrophys. 414, 1169 (2004).
- Shulyak D., Ryabchikova T., Mashonkina L., and Kochukhov O. "Model atmospheres of chemically peculiar stars. Self-consistent empirical stratified model of HD 24712". Astron. Astrophys. 499, 879 (2009).
- Shulyak D., Ryabchikova T., Kildiyarova, R., and Kochukhov O. "Realistic model atmosphere and revised abundances of the coolest Ap star HD 101065". Astron. Astrophys. 520, A88 (2010).
- Shulyak D., Ryabchikova T., and Kochukhov O. "Fundamental parameters of bright Ap stars from wide-range energy distributions and advanced atmospheric models". Astron. Astrophys. 551, A14 (2013).

- Shulyak D., Tsymbal V., Ryabchikova T., Stütz Ch., and Weiss W.W. "Line-by-line opacity stellar model atmospheres". Astron. Astrophys. **428**, 993 (2004).
- Smith K.C. "Anomalous gallium line profiles in HgMn stars: Possible evidence for chemically stratified atmospheres". Astron. Astrophys., 297, 237 (1995).
- Stift M.J. and Alecian, G. "Modelling ApBp star atmospheres with stratified abundances consistent with atomic diffusion". MNRAS **425**, 2715 (2012).
- Stütz Ch., Ryabchikova T., and Weiss W. W. "Magnetic field measurements of Ap stars. Discovery of a strong magnetic field in HD 18610". Astron. Astrophys. 402, 729 (2003).
- Takada-Hidai M., Sadakane K., and Jugaku J. "The abundance of gallium in B-type chemically peculiar stars". Astrophys. J. 304, 425 (1986).
- Tikhonov A.N., and Arsenin V.Y. Solutions of ill-posed problems, Wiely: New York (1977).
- Tody D. "The IRAF Data Reduction and Analysis System". In Proc. SPIE Instrumentation in Astronomy VI, ed. D.L.Crawford, 627, 733 (1986).
- Tsymbal V. "STARSP: A Software System For the Analysis of the Spectra of Normal Stars". ASP Conf. Ser. **108**, 198 (1996).
- Valenti J.A., Piskunov N., and Johns-Krull C.M. "Spectral Synthesis of TiO Lines". Astrophys. J. 498, 851 (1998).
- van Leeuwen F. "Hipparcos, the New Reduction of the Raw Data". Astrophysics and Space Science Library, Springer (2007).
- van Regemorter. "Rate of Collisional Excitation in Stellar Atmospheres". Astrophys. J. **136**, 906 (1962).
- van Rensbergen W., Hensberge H., and Adelman S.J. "General study of the apparently average magnetic Ap star Theta Aurigae. II Model". Astron. Astrophys. **136**, 31 (1984).
- Varenne O., and Monier R. "Chemical abundances of A and F-type stars: the Hyades open cluster". Astron. Astrophys. 351, 247 (1999).

- Vauclair S., Hardorp J., and Peterson D.M. "Silicon levitation in chemically peculiar stars and the oblique rotator model". Astrophys. J. 227, 526 (1979).
- Villemoes P., van Leeuwen. R., Arnesen A., Heijkenskjóld F., et al. "Experimental and theoretical study of the hyperfine structure in the lower configurations in ⁴⁵Sc II". Phys. Rev. A 45, 6241 (1992)
- Wade G. A. "Evolutionary estimates for 10 magnetic AP stars calculated from their rigid rotator geometries". Astron. Astrophys. 325, 1063 (1997).
- Wade G.A., Ryabchikova T. A., Bagnulo S., and Piskunov N. "Chemical Stratification in Magnetic Ap Stars". In *Magnetic fields across the Hertzsprung-Russell Diagram*, ASP Conf. Ser. 248, 373 (2001).
- Wade G.A., Smith M., Bohlender D.A., et al. "The magnetic Bp star 36 Lyncis. I. Magnetic and photospheric properties". Astron. Astrophys. 458, 569 (2006).
- Zhang, Z.G., Svanberg, S., Palmeri, P., Quinet, P., and Biémont, E. "Measurement of lifetimes by laser-induced fluorescence and determination of transition probabilities of astrophysical interest in Nd III". Astron. Astrophys. 385, 724 (2002).
- Атутов С.Н., Шалагин А.М. "О возможных проявлениях эффекта светоиндуцированного дрейфа в астрофизических объектах". Письма в Астрон. ж. **14**, 664 (1988)
- Бойко С. А. Дипломная работа "Поиск и исследование пульсаций лучевых скоростей в атмосфере магнитной пекулярной звезды HD 185256". Физический факультет Московского Государственного Университета им. М.В. Ломоносова (2011).
- Глаголевский Ю.В., Рябчикова Т.А., Чунтонов Г.А. "Магнитное поле и химический состав пекулярной звезды HD 10221". Письма в Астрон. ж. **31**, 363 (2005).
- Добричев В. М., Рябчикова Т. А., Райкова Д. "Анализ химического состава атмосферы θ Vir". Астрофизика **26**, 31 (1987).
- Птицын Д. А., Рябчикова Т. А. "Химический состав В-звезды HD 204754, подозреваемой в дефиците железа". Астрон. ж. **63**, 527 (1986).

- Романюк И.И., Кудрявцев Д.О. "Магнитные поля химически пекулярных звезд. 1. Каталог магнитных СР-звезд". Астрофиз. Бюлл. **63**, 148 (2008).
- Рябчикова Т.А. "Температурное поведение содержания химических элементов в атмосферах магнитных пекулярных звезд". Письма в Астрон. ж. **31**, 437 (2005).
- Рябчикова Т.А., Саванов И.С., Маланушенко В.П., Кудрявцев Д.О. "Исследование редкоземельных элементов в атмосферах химически пекулярных звезд. Линии Pr III и Nd III". Астрон. журн. **78**, 444 (2001).
- Рябчикова Т.А., Смирнов Ю.М. "Силы осцилляторов линий Ga II в видимой области спектра и содержание галлия в атмосфере HgMn звезды к Cnc". Астрон. ж. **71**, 83 (1994).
- Саванов И.С., Маланушенко В.П., Рябчикова Т.А. "Переменность лучевых скоростей пульсирующих Ар звезд. Линии Pr III и Nd III в спектре звезды γ Equ". Письма в Астрон. ж. **25**, 916 (1999).
- Саванов И.С., Рябчикова Т.А., Давыдова Е.С. "Исследование атмосфер SrCrEu звезд !5 Сот A и 21 Сот скопления Волосы Вероники". Письма в Астрон. ж. **22**, 910 (1996).
- Саванов И.С., Кочухов О.П., Цымбал В.В. "Вертикальное распределение хрома в атмосферах СР звезд. II. Моделирование". Астрофизика 44, 253 (2001).
- Семенко Е.А., Кудрявцев Д.О., Рябчикова Т.А. Романюк, И.И. "HD 45583 химически пекулярная звезда с необычной кривой переменности продольного магнитного поля". Астрофиз. Бюлл. **63**, 136 (2008а).
- Семенко Е.А., Сачков М.Е. Рябчикова Т.А. Кудрявцев Д.О., Пискунов Н.Е. "Исследование химического состава и поиск нерадиальных пульсаций в атмосфере химически пекулярной звезды HD 115708". Письма в Астрон. ж. **34**, 455 (2008b).
- Титаренко А.Р., Семенко Е.А., Рябчикова Т.А. "Химический состав и стратификация химических элементов в атмосфере Ар-звезды HD 8441". Письма в Астрон. ж. **38**, 805 (2012).
- Титаренко А.Р., Рябчикова Т.А., Кочухов О.П., Семенко Е.А. "Химический состав и эволюционный статус Ар-звезды HD 138633". Письма в Астрон. ж. **39**, 390 (2013).

			магнитны	е химически пе	кулярные звездь	1		
	HD101065	HD122970	HD24712	HD128898	HD12098	HD137949	HD176232	HD115226
	log(N/N,)	$\log(N/N_{\odot})$	$\log(N/N_{\odot})$	log(N/N,)	$\log(N/N_{\odot})$	log(N/N,)	log(N/N,)	log(N/N,)
CI	2.01(20)	2 51(25)	4 41	2 02(20)	log(IV/IVtot)	2 28(24)	4.21(17)	log(IV/IVtot)
	=3.51(20)	=3.31(23)	-4.41	=3.92(20)	_	=3.38(24)	=4.21(17)	_
	_	_	-	-	-	-	_	-
NI			-	-4.53(07)	-	-		-
OI	-3.42(36)	-3.34(15)	-4.2	-3.58(22)	-	-3.5:	-3.72(08)	-
NaI	-6.03(22)	-5.87(02)	-6.7	-5.91(06)	-	-6.76:	-6.05(10)	-
MgI	-	-4.50(14)	-5.6:	-4.52(15)	-	-4.50(34)	-4.32(30)	-4.5
MeII	4.41:		_	-4.36:	_	_	-4.46:	-4.5
A 11	6 69	-5 73.	_	5 52	_	_	-5.83(06)	
C'I	4.48(80)	-0.10.		4 51(00)	4.5	4.04(07)	-0.00(00)	1.0
511	-4.43(30)	-4.45(21)	_	-4.51(20)	-4.5:	-4.24(27)	-4.19(24)	-4.0
Sill	-4.12(51)	-4.24(17)	-4.43:	-4.20(15)	-4.5:	-	-4.11(35)	-4.6
SI	-4.76:	-4.83(12)	-	-5.01(19)	-	-4.74	-5.34(17)	-
CaI	-6.74(42)	-5.48(24)	-5.69:	-5.29(16)	-5.20(20)	-5.10(30)	-5.28(19)	-5.4(2)
CaII	- '	-5.43(16)	-4.88:	-5.09(26)		-	-5.5(43)	
ScII	-8.97(59)	-8.66(14)	_	-9.39(19)	_	-7.83(12)	-9.55(25)	_
Til	-7.38(31)	-6.91(21)	-7 29(20)	-7.33(19)	_	_	-7.12(16)	_
T:11	7.22(20)	6.99(17)	7.98(19)	7.99(17)	6 7.	6 70(16)	7.00(15)	7
1111	-7.32(30)	-0.88(17)	-7.28(12)	-7.23(17)	-0.7:	-0.79(10)	-7.09(13)	- / .
VI	-7.15(41)	-7.84(15)	-	-7.48:	-	_	-7.94(10)	-
VII	-7.28(32)	-7.73(11)	-	-7.41(24)	-	-7.20:	-7.78(25)	-
CrI	-6.45(34)	-5.99(20)	-5.80(06)	-5.70(21)	-	-5.23(07)	-5.13(17)	-5.
CrII	-5.91(30)	-6.06(21)	-5.33:	-5.46(35)	-5.20(30)	-5.35(23)	-5.08(23)	-5.
MnI	-6.26(29)	-6.40(17)	-7.01(03)	-6.14(20)	– ´´	-5.58:	-6.13(24)	-
MpH	-5.68(20)	-6.31(02)		-5.98(14)	_	_	-6.13(16)	_
Fol	-5.68(20)	_4 49(19)	-4.88(25)	-4.61(17)	-4 30(95)	-4.30(10)	-4.28(21)	_4 55
E-II	-0.00(20)	4.46(10)	=4.00(20) E 11(10)	-4.01(17)	4.20(25)	-4.30(10)	-4.20(21)	-4.00
Fell	-5.15(25)	-4.40(19)	-5.11(19)	-4.39(17)	-4.20(25)	-4.10(20)	-4.08(25)	-4.33
CoI	-6.00(22)	-6.06(26)	-5.57(19)	-5.93(26)	-	-	-5.66(25)	-6.
CoII	-5.09(47)	-5.84(05)	-5.53(50)	-5.63(31)	-	-	-5.59(02)	-
NiI	-7.01(47)	-5.89(19)	-6.34(24)	-6.51(26)	-	-5.87:	-6.37(22)	-
NiII			_	_	_	-	-	-
CuI	-7.97(05)	-8 13(08)	_	_	_	_	-8 59(07)	_
ZnI	1.01(00)	7 8(26)				7.08(52)	0.00(01)	
	-	=1.8(20)	_	= = 05(10)	_	=1.08(32)	=0.09	_
Srl	-7.60:	-7.70(22)	_	-7.27(13)	-	-	-6.93(14)	-
SrII	-7.91(07)	-7.31:	-8.2:	-8.70(50)	-	-	-	-
YI	-7.97:	-8.67:	-7.8:	-7.90:	-	-	-	-
YII	-9.17(24)	-9.09(17)	-8.3:	-8.65(17)	-8.15:	-8.37(16)	-8.72(16)	-8.5
ZrI	-7.90(46)	-8.41(29)	-	-	-	-	-8.73:	-
ZrH	-7.53(21)	-8.48(17)	_	-9.34(12)	_	_	-8.97(28)	_
NbI	-7.48(25)		_	-	_	_		
NLII	-1.40(20)							
NDII	- -	_	-	—	-	-	-	-
MOI	-7.56(29)	_	-	—	_	-	_	-
RuI	-7.57(34)	-	-	-	-	-	-	-
PdI	-6.98(23)	-	-	-	-	-	-	-
BaI	-7.63(27)	-8.12(41)	-	-	-	-	-	-
BaII	-8.22(04)	-8,99(05)	-8.98:	-10.17(13)	-10.25:	-9.06(29)	-9.78(32)	-10.5
LaII	-7.91(36)	-9.34(25)	-8.75(20)	-10.21(17)	-8.6:	-8.58(24)	-9.73(23)	-9.5
Cell	-7 53(32)	-8.82(28)	-8 9(09)	-9.47(18)	_	-7 57	-9.05(22)	-9.5
C III	-1.00(02)	-0.02(20)	-0.5(05)	-3.47(10)		-1.01.	-5.00(22)	-5.0
Celli	-5.70(24)	-	-	-7.63:	-	-	-0.75(34)	-
PrII	-8.54(31)	-10.04(21)	-9.74930)	-10.16:	-8.6(20)	-9.05(18)	-10.17(27)	-9.6
PrIII	-6.58(38)	-8.63(30)	-8.08(24)	-8.49(23)	-7.04	-6.86(34)	-9.21(30)	-8.1(2)
NdII	-7.11(34)	-9.23(27)	-8.60(27)	-9.50(19)	-7.8(20)	-8.20(37)	-9.77(29)	-8.9(3)
NdIII	-5.97(60)	-8.03(26)	-7.14(20)	-7.83(26)	-6.00:	-5.99(44)	-7.22(54)	-7.2(3)
SmII	-7.25(39)	-9.33(22)	-9.16	-9.66(24)	-8.0(20)	-7.96(10)	-9.24(22)	-9.3(3)
EuII	-8.08(45)	-9.66(13)	-9.4:	-9.67(07)	8.80:	-8.34(14)	-9.64(13)	-10.2
EnIII	_		_	_	-	_		_
GdII	-7.34(33)	-8.67(19)	-87(2)	-9.45(26)	-7.80	-7.93(38)	-8 69(23)	-0.3
TLI	-1.0±(00)	10.00(19)	10.7	10.9(20)	-1.60.	-1.00(00)	10 51	-0.0
TDII	-8.84(22)	-10.00(12)	-10.7:	-10.2(3)	-	-	-10.51:	-
тыш	-6.07(43)	-8.13(31)	-7.95(13)	-8.36(28)	-	-	-8.44(31)	-8.2
DyII	-7.45(33)	-9.07(17)	-8.94(27)	-9.54(27)	-	-8.63:	-9.23(27)	-9
DyIII	-5.78(33)	-7.20(25)	-	-7.28(33)		-	-7.45(26)	-7.3(2)
HoIII	-6.34(11)	-	-	_	-	-	_	-
ErII	-7.81(30)	-9.63(37)	-9.53:	-9.90(29)	-	-8.34(08)	-9.17(27)	-
ErIII	-6.18(29)	-7.60(43)	_	-7.71(11)	_	_	-7.59(29)	-
TmII	-8 16(32)	-9.04(23)	_	_	_	_	=9.15(25)	_
VhII	8 08(27)	0.82(20)					10.05(20)	
1 011	-0.90(37)	-9.03(39)	0.50	_	_	-	-10.05(34)	
Lull	-8.44(30)	-9./0(10)	-9.50:	—	-	-	-10.52(47)	-
HfII	-8.39(30)	-8.66(06)	-	-	-	-	-9.26(26)	-
TaI	-8.59(49)		-	-	-	-	-	-
WI	-7.83(61)	-		-	-	-	-	
WII	-7.79(35)	-	_	_	-	_	_	-
BeI	-7.60(04)	_	_	_	_	_	-	_
IrI	-7 17(11)	_	_	_	_	_	_	_
D+1	7 49(10)							
F11	-1.43(12)	-	-	-	-	-	-	-
Hgi	-7.76(15)	-	-	—	-	-	-	-
ThII	-9.18(35)	-9.66(53)	-	-	-	-	-9.71(23)	-
ThIII	-8.09(18)	-8.84(20)	-	-	-	-	-	-
UII	-8.44(15)		-	-	-	-	-9.86(20)	-

Таблица А1.1: Содержания химических элементов в атмосферах исследованных звезд

	HD75445	HD166473	HD201601	HD29578	HD62140	HD116114	HD137909
	$\log(N/N_{tot})$						
CI	-	-4.24(11)	-4.0:	-	-	-	-
CII	_	- , , ,	_	-	_	_	_
NI	_	_	_	_	_	_	_
OI	-3.90(05)	-4.67(21)	-3.9:	-3.9:	_	-3.9:	_
NaI	-6.12(02)	-5.84(37)	-5.73(25)	-6.0:	_	-4.43(14)	-5.47:
MøI	_	-4 99(53)	-4 19(08)	_	_	_	_
MgII	_	-4.27(31)	-4.5	_	_	_	_
All	_	4.78(37)	-4.0.			5.86.	
S:I	4.20(06)	4.10(36)	4 49(95)	4.01(12)	4 7.	-5.80.	4.00(05)
CIL	-4.29(00)	-4.10(20)	-4.42(23)	-4.01(13)	-4.7.	-4.41(00)	-4.09(03)
	_	-3.93(22)	4 74(97)	—	_	-	_
	- F (0(10)	-4.64(10)	-4.74(37)	-	_	-0.27:	- 5 10(00)
Cal	-5.68(40)	-5.34(29)	-5.40(22)	-5.11(28)	_	-3.22(21)	-5.10(06)
Call	_	-5.12(38)	-0.03:	-	_	-	_
ScII	—	-7.87(06)	-9.45(12)	—	-	-8.98(18)	-
Til	—	-6.70:	-6.95(12)	—	-	-6.63(40)	-6.15(37)
Till	-	-7.03(26)	-7.00(22)	-	-	-7.15(19)	-5.86(02)
VI	-7.58:	-6.6(28)	-7.15(04)	-	-	-	-
VII	-7.68:	-6.83(29)	-7.05(34)	—	-	-7.17:	-
CrI	-5.53:	-5.50(45)	-5.43(29)	—	-	-5.38(23)	-4.24(39)
CrII	-5.50(10)	-5.36(22)	-5.66(34)	-4.83(34)	-4.6(20)	-5.41(28)	-4.68(57)
MnI	-	-5.70(30)	-6.01(24)	_	-	-5.98(28)	-
MnII	-5.8(10)	-5.3:	-5.46(19)	-5.70(20)	-	-5.78(07)	-5.02:
FeI	-4.55(20)	-4.34(22)	-4.28(25)	-4.03(14)	-4.2(15)	-4.20(24)	-3.92(40)
FeII	-4.33(40)	-4.31(22)	-4.42(45)	-3.93(25)	-4.2(15)	-4.18(25)	-3.66(29)
CoI	-5.51(19)	-6.03(12)	-5.98(11)	-5.90:		-5.60:	
CoII	_		-6.18:	_	_	_	_
NiI	-6.15(13)	-5.74(27)	-6.06(24)	-5.9(20)	_	-5.50(12)	-5.41:
NiII	_	_	-5.49:	_	_	_	_
CuI	_	_	_	_	_	_	_
ZnI	_	_	_	_	_	_	_
SrI	_	-6.90(36)	-6.84(21)	_	_	_	_
SrII	_	-7.0	-7 /3	_	_	_	_
VI	_	-	-7.94	_	_	_	_
VII	_	7 86(21)	8 51(39)	_		8 81(26)	
7rI	_	-1.00(21)	-0.01(02)			-0.01(20)	_
$\frac{211}{7rH}$		8 20(30)	8 68(28)				8 30.
NbI		-0.20(30)	-0.00(20)				-0.55.
NbII			-8.85				
MoI	_		-0.00.	_			_
Bul							
PdI	_		_	_			_
Bal	_	_	_	_	_	_	_
Ball	-0.30-	-10.37(06)	-9.06(15)	-8 70.	_	-9.02(24)	-0.23.
LaII	-9.05(13)	-8.30(25)	-9.59(20)	-8.38(20)	_	-8 72	-8.35
Coll	-5.00(15)	7.55(41)	-5.05(20)	8.60		8 20.	7.84(30)
CoIII	-8.90.	=1.00(41)	=9.20(34)	-8.00.		-0.20.	-1.64(55)
D _n II	0.85(16)	● ♀ 1(੨੨)	0.08(22)	-0.00(14)	e e(25)	0.27(21)	-0.00()
D _n III	-9.85(10)	-6.61(22)	-9.98(32)	-9.90(14)	-0.0(20)	-9.37(31)	-9.20(29)
NIII	-0.07	-7.00(38)	-0.31(20)	-9.20.	-8.00(30)	-9.39(02)	-9.33(20)
Nall	-8.55(03)	-7.97(28)	-9.17(32)	-8.70:	-7.87(20)	-8.82(40)	-9.17(22)
	-0.07:	-0.43(37)	-7.5(20)	-7.00:	-0.58(20)	-8.68(20)	-8.36(05)
Smil	-8.99(08)	-8.23(23)	-9.53(24)	_	0.05	-8.59(12)	-8.98(38)
Eull	_	-8.43(20)	-10.24(28)	_	-8.80:	_	-8.28(11)
Luill	_	-	-	—	-	- 7 70	-5.65:
Gall	_	-1.87(20)	-9.35(21)	—	-	-1.10:	-1.54(29)
Tbll	-	-8.8:	-10.15(30)	-	-	-9.94:	-
TbIII	-	-	-8.56	-	-	-	-
DyII	-	-7.79(37)	-9.14(17)	—	-	_	-
DyIII	_	-	-	-	-	_	-
HoIII	-	-	-	—	-	—	-
ErII	-	-8.22(17)	-10.04(22)	-	-	-	-9.07:
ErIII	-	-7.50:	-8.04:	-	-	-	-
TmII	-	-8.70:	-	-	-	-	-
YbII	-9.70:	-8.93(32)	-	-9.20:	-	-9.15:	-
LuII	-10.07:	-8.82(27)	-	-	-	-	-
HfII	_	-	_	_	-	_	-
TaI	_	-	_	_	-	_	—
WI	_	_	-	-		-	_
WII	_	_	-	-		-	_
ReI	_	_	_	_	_	_	_
IrI	_	_	_	_	_	_	_
PtI	_	_	_	_	_	_	_
HgI	_	_	_	_		_	_
$\widetilde{\mathrm{ThII}}$	_	_	_	_	_	_	-9.60:
ThIII	_	_	_	_	_	_	_
UII	_	_	_	_	_	_	_

Таблица А1.1: (продолжение)

	HD177765	HD18610	HD42659	HD60435	HD204411	HD188041	HD108945
	$\log(N/N_{tot})$						
CI	-3.70:	-3.40(11)	-	-	-4.37(17)	-3.70(11)	-
CII	-	-	-	-	-	-	-
NI	-	-	-	-	-3.93(37)	-	-
OI	-	-	-	-	-4.03(33)	-	-3.94
NaI	_	-4.59(07)	_	_	-5.28(20)	-5.12:	_
MgI	_	-4.43:	_	_	-4.34(22)	_	_
MøII	_	_	_	_	-4.62(55)	-4.43	-4.54
All	_	_	_	_		_	
Sil	-3 63(23)	-3.82(20)	-4.9	-4.13(11)	-4.13(11)	-4.00(20)	_
SII	3 56	0.02(20)	1.0	1.10(11)	4 11(07)	5.0:	4.57
SIII	-5.50.				5.17(46)	5.0.	-4.07
Cal	$A \in A(A2)$	E 19(4)	_	E 2.	5.17(40)	4 00(00)	G E 4
Call	-4.04(43)	-3.16(4)	—	-5.5.	-5.17(02)	-4.02(20)	-0.54
Call	-4.22.	-	—	_	-4.07(17)	_	_
SCII TU	- 5 04(94)	-7.80(03)	—	—	-9.52:	-	_
111	-3.94(24)	-	—	—	-0.40(09)	0.0:	_
1111 VI	-0.48(19)	-0.22(27)	-	-	-0.49(10)	-0.0:	_
VI	-	-	-	-	-	_	_
	-	-	-	-7.65:	-	-	-
CrI	-4.18(51)	-4.24(39)	-	-	-4.85(16)	-4.25(14)	-
CrII	-4.36(35)	-4.12(28)	-5.19(30)	-5.12(22)	-4.70(21)	-3.89(26)	-4.84
Mnl	-5.07(04)	-5.77:	-	-	-5.96(11)	-	-
MnII	-5.30:	-	-	6.00(20)	-5.66(38)	-	-
Fel	-3.40(22)	-3.81(31)	-4.60(30)	-4.27(10)	-3.76(22)	-3.98(22)	-
FeII	-3.25(32)	-3.87(35)	-4.60(30)	-4.30(08)	-3.52(33)	-3.63(29)	-4.
CoI	-5.06(43)	-	-	-5.45(09)	-6.19(28)	-	-
CoII	-	-	-	-	-6.50:	-	-
NiI	-6.35(27)	-5.14(42)	-	-	-5.68(22)	-5.85(10)	-
NiII	-	-4.93:	-	-	-5.31(12)	-	-
CuI	-	-	—	-	-	-	-
ZnI	-	-	-	-	-7.74(04)	-	-
SrI	-5.47(05)	-	—	-	-	-	-
SrII	-	-	-	-	-8.5:	-	-
YI	-	-	-	-	-	-	-
YII	-8.44:	-8.80(48)	-	-	-9.95(28)	-	-
ZrI	-	-	-	-	-	-	-
ZrII	-8.38:	-	—	-	-8.66:	-8.60:	-
NbI	—	-	—	-	-	-	-
NbII	-	-	—	-	-	-	—
Mol	—	-	—	-	-	-	—
Rul	-	-	—	-	-	-	-
PdI	-	-	-	-	-	-	-
Bal	-	-	—	-	-9.02(28)	-	-
Ball	-	-9.25:	—	-8.40:	-	-9.8:	-
Lall	-8.60(44)	-8.30(26)	—	-	-	-8.19(26)	-
Cell	-7.01(36)	-6.98(34)	-	-	-10.26:	-7.87(25)	-
CellI	-5.49(09)	-	—	-	-	-	-
PrII	-9.54:	-8.82(13)	-9.14(30)	-	-	-8.44(38)	-
PrIII	-8.69:	-8.58(26)	-7.80(24)	-	-	-8.95(30)	-
NdII	-9.40(22)	-8.45(54)	-8.69(30)	-8.5:	-9.48(27)	-7.97(42)	-
NdIII	-8.53(10)	-7.62(44)	-7.62(10)	-7.0:	-10.05(10)	-7.93(22)	-
Smll		-8.59(31)	-	-9.4:	-	-8.28(19)	-
Eull	-7.95(13)	-7.24(11)	-9.60:	-	-10.95:	-7.85(21)	-
EuIII	-6.20:	-	—	-	-	-	-
Gall	-7.62(29)	-7.05(20)	-	-	-	-0.13(31)	-
TDH	-	-	—	-	-	-	-
1 DIII DuT	-	-	-	-	-	-	-
Dyll	-6.90:	-	—	-	-	-	-
DyIII	-	-	—	-	-	-	-
Holl1	—	-	—	-	-	-	-
Erii E-III	-	-	-	-	-	-8.18(14)	-
Erill Trill	-	-	-	-	-	-	-
1 IIIII VLIT	7 00(21)	- 8 00.	-	- 0.2	-	-	-
	-7.99(31)	-0.92:	-	-9.5:	-	_	-
Lull Цftt	_	_	-	_	-	_	-
T ₂ I	_		_			_	_
WI	_	_	_	_	_	_	_
WI	_		_	_		_	_
Rot	_	_	_	_	_	_	_
IrI	_		_	_		_	_
P+I	_		_	_	_	_	_
Hal						_	_
ThII	_	_	_	_	_	_	_
ThIII		_	_	_	_	_	_
UII	_	_	_	_	_	_	_
~ 11							

Таблица А1.1: (продолжение)

	HD110066	HD212385	HD133792	HD183806	HD108662	HD144897	HD10221
	$\log(N/N_{tot})$	$\log(N/N_{tot})$	$\log(N/N_{tot})$	$\log(N/N_{tot})$	$\log(N/N_{tot})$	$\log(N/N_{tot})$	$\log(N/N_{tot})$
CI	-3.82:	-	-4.68(07)	-3.38(16)	-	-	-
CII	_	_	- ,	- ` `	_	-4.15:	-4.10:
NI	_	_	-5.16(08)	_	_	_	_
OI	-4.06	_	-4.23(42)	_	-3.94	-4	-2.90.
NaI		_	-5.35(22)	-5.71	_	_	
MaI		4.96(13)	3.01(02)	4 40(20)		5.6	
MgI	_	-4.20(13)	-3.91(02)	-4.40(20)	20	-5.0	5 50.
AIT	_	-3.03.	-4.18(008)	_	-3.0	-5.0	-5.50.
All	2.05(02)	-	-	-	_	-	-
Sil	-3.25(03)	-4.29:	-3.69(21)	-3.90(22)	-	-3.8	-
Sill	—	-4.23:	-5.09(50)	-	-5.49(12)	-3.8	-3.55(15)
SI	-	-	-	-	-	-	-4.96:
Cal	-5.03(18)	-4.60(26)	-5.09(50)	-4.70(17)	-5.42	-6.	-
CaII	-	-4.79(53)	-7.36(83)	-5,76:	-	-6.	-
ScII	-8.02:	-7.80:	-9.50(38)	-8.82(02)	-	—	-
TiI	_	-	-	-6.56(23)	-	-6.4	-
TiII	-5.91:	-6.60(22)	-6.88(18)	-6.78(16)	-	-6.4	-6.37(25)
VI	_	- ` ´	- ´	- ` `	-	_	_`
VII	_	_	-8.14(17)	_	_	_	-6.85:
CrI	-3.59(31)	-4.20(14)	-3.79(20)	-3.90(12)	_	-4.3	-4.06(07)
CrII	-3.37(32)	-4 84(54)	-3.75(22)	-4.34(16)	-3.11(25)	-4.3	-4.43(32)
MnI	0.01(02)	-5.33(12)	-5.55(17)		0.11(20)	-5.3	1.10(02)
MaII		-0.00(12)	5.20(10)	5.70(10)		5.9	4.04(21)
Fol	2 25(19)	-4.73(20) 2.81(22)	-3.33(10) 2.21(20)	-3.73(10) -3.97(07)	_	-0.0	=4.54(51) 2 14(20)
L'GI	-0.00(10)	-0.01(20) 9.79(20)	-0.01(20) 2.18(0E)	-0.07(07) 9.59(17)	2 (14)	-0.0	-0.14(09)
ген	-2.03(33)	-3.13(32)	-3.16(23)	-3.33(17)	-3.02(14)	-3.3	-3.30(24)
COL	_	-	-0.49(10)	_	-	-4.07(12)	-
Coll	-	-	-5.99(79)	-	-	-4.51(32)	-
N1I N1I	-4.93(10)	-	-6.05(25)	-5.99:	-	-	-
Nill	-	-	-5.96(11)	-4.56:	-	-	-
Cul	-	-	-	-	-	-	-
ZnI	-	-	-	-	-	—	-
SrI	_	-	-5.71(31)	-	-	-	-
SrII	-	-	-6.36(09)	-	-	-7.45(55)	-6.0(2)
YI	_	-	-	_	-	_	-
YII	_	-	-9.12(46)	-8.24:	-	-7.70(09)	-6.35(20)
ZrI	_	-	- ´	_	-	-	-
ZrII	-7.91:	-	-9.47(10)	_	-	-7.38(15)	-7.50
NbI	_	_		_	_	_	_
NbII	_	_	_	_	_	_	_
MoI	_	_	_	_	_	_	_
RuI	_	_	_	_	_	_	_
PdI			7.33(10)	_		_	
Pol		_	-7.55(10)		_		_
Dall	0.12.	0.20.	9.72(16)	0 75	_	0.0.	_
LaII	-9.13.	-9.20.	-8.73(10)	-0.10	_	-9.0.	_
CIII	-0.49(40)	_	0.07	-0.09(20)	_	-7.43(12)	_
Cell	-(.42(45)	-	-9.07:	-8.32(11)	_	-6.69(20)	_
Celli	-	_	-8.41(07)	-	_	-0.04(18)	_
PrII	-8.42(27)	-	-	-9.88:	-	-6.60(14)	
PrIII	-8.80:	-	-9.51(17)	-9.45:	-	-6.69(14)	-7.48:
NdII	-7.77(45)	-7.75(25)	-9.08(43)	-8.71:	-	-6.45(12)	-
NdIII	-8.13(03)	-	-9.10(01)	-8.52:	-	-6.45(20)	-6.00:
SmII	-	-	—	_	-	-6.98(21)	-6.85(35)
EuII	-	-	-9.80(20)	_	-8.29:	-7.75(20)	-7.45(15)
EuIII	-	-	-	-	-	-6.32(23)	-
GdII	-7.05(05)	-	-9.60(04)	-7.71(15)	-	-6.95(18)	-7.80:
TbII	_	-	-	_	-	-7.83(10)	-
TbIII	-	-	-	_	-	-7.92(22)	-8.0:
DyII	_	-	-10.02(38)	_	-	-7.12(22)	-
DyIII	_	-	- ` ´	_	-	-6.99(39)	-7.35(15)
HoIII	_	_	_	_	_	-8.08(16)	
ErH	-8.01:	_	_	_	_	-7.55(14)	_
ErIII	_	_	_	_	_	-7.21(14)	-8.05(25)
TmH	_		_	_	_	-7.12(20)	
VhII	_	_	_	_	_	-7 50	_
LuII	_		_	_	_	-8.60	_
Hft			_	_			_
Tel	_		_	_			-
1ai WI	_	-	-	-	-	_	-
W1	-	-	—	_	-	_	—
WII	_	-	—	_	-	—	—
Kel	-	-	-	-	-	-	-
Irl	-	-	-	-	-	-	-
PtI	-	-	-	_	-	-	-
HgI	-	-	-	_	-	-	-
ThII	-	-	-	_	-	-	-
ThIII	-	-	-	_	-	-	-
UII	-	_	_	_	-	—	_

Таблица А1.1: (продолжение)

			Нормальные з	везды		
	HD49933	HD37594	HD32115	HD209459	HD17081	Sun
	$\log(N/N)$	log(N/N)	log(N/N)	log(N/N)	log(N/N)	log(N/N)
CI	$\frac{108(11/11_{tot})}{2.74(10)}$	10g(1)/11 _{tot})	iog(in/in _{tot})	$\frac{108(11/11_{tot})}{2.6C(14)}$	iog(in/in _{tot})	$\frac{10g(1N/1N_{tot})}{2.65}$
CI	-3.74(10)	_	—	-3.66(14)	—	-3.65
CII	—	-	—	-	—	-3.65
NI	-	-	—	-3.95(12)	-4.03(13)	-4.18
OI	-3.55:	-	-	-3.28(11)	-3.06(14)	-3.31
NaI	-6.15(05)	_	_	-5.60:	-5.23(07)	-5.75
MgI	-4.83(07)	_	-	-4.42(12)	-4.27:	-4.5
MgII	-4.73:	_	_	-4.56(03)	-4.47(16)	-4.5
AIĬ	-6.20:	_	_	-5.89:	-5.57:	-5.58
Sil	-4.88(21)	-4 75(08)	-4 53(13)	-4.95	-4.80	-4.51
SII	4.82(02)	4 50(04)	-4.03(10)	-4.50. 4.40(13)	-4.00.	4.51
CT	=4.02(02) 5.02(07)	=4.05(04)	=4.47(12)	=4.45(15)	-4.41(20)	4.01
C I	-5.25(07)	- 5 00(10)	- F 71(0C)	- F 04(11)	—	-4.00
Cal	-6.01(11)	-5.92(10)	-5.71(06)	-5.84(11)	_	-5.73
Call	-6.01(09)	-5.77(12)	-5.64(13)	-5.98(08)	-5.77:	-5.73
ScII	-9.24(12)	-	—	-9.37(10)	-9.31:	-8.97
TiI	-7.54(07)	-7.35(11)	-7.16(06)	-	-	-7.11
TiII	-7.42(12)	-7.25(08)	-7.09(05)	-7.23(09)	-7.42(08)	-7.11
VI	-8.50(13)		-	-	- ,	-8.05
VII	-8.47(23)	_	_	-7.98(06)	_	-8.05
CrI	-6.82(17)	-6.74(14)	-6.44(11)	-6.29(09)	_	-6.39
CrII	-6.61(17)	-6.62(08)	-6.31(10)	-6.20(10)	-6.41(10)	-6.39
MnI	_7 99(14)		0.01(10)	-6 54(91)		-6.64
MnII	-7.33(14)	_	_	-0.54(21)	6 50(00)	-0.04
IVIIIII EeI	F 04(00)	-	4 62(07)	-0.31(17)	-0.00(09)	-0.04
rei	-5.04(06)	-4.91(09)	-4.03(07)	-4.52(13)	-4.53(22)	-4.08
Fell	-5.03(08)	-4.84(10)	-4.59(08)	-4.50(12)	-4.58(14)	-4.58
Col	-7.49(10)	-	—	-	—	-7.14
CoII		-	-	-6.75(18)	-6.93:	-7.14
NiI	-6.34(10)	_	_	-5.71(05)	_	-5.82
NiII		_	_	-5.61(09)	-5.76(19)	-5.82
CuI	-8.65(07)	_	_	-		-7.77
ZnI	-8.12(06)	_	_	_	_	-7.39
SrI	-9.65	_	_	_	_	-9.14
STI	0.50(04)			0.10.	0.15.	0.14
VI	-9.50(04)	_		-9.10.	-9.10.	-9.14
II VII	-	_	—	-	—	-9.64
YII	-10.34(10)	-	—	-9.76(15)	—	-9.84
Zrl		-	-	-	-	-9.47
ZrII	-9.85(06)	-	—	-9.48(28)	—	-9.47
NbI	-	-	-	-	-	-10.62
NbII	_	_	—	-	—	-10.62
MoI	-	_	-	-	-	-10.12
RuI	_	_	_	_	_	-10.2
PdI	_	_	_	_	_	-10.35
Bal	_	_	_	_	_	-9.83
Dal	10.06(10)			-0.10(06)	_	-9.00
LII	-10.00(19)	_	_	-9.19(00)	_	-9.65
CII	-11.21(11)	_	_	_	_	-10.87
Cell	-10.73(10)	-	-	-	-	-10.46
CeIII	-	-	—	-	—	-10.46
PrII	-	-	—	-	—	-11.27
PrIII	_	_	_	-	_	-11.27
NdII	-10.77(28)	-	—	-	—	-10.57
NdIII		_	_	-10.09(07)	_	-10.57
SmII	-11.09(16)	_	_		_	-11.08
EuH	-11.92(10)	_	_	_	_	-11.51
EuIII		_	_		_	-11.51
GdU	-11 16(00)	_	_	_	_	-10.95
Thu	-11.10(09)					11.7
	_	_	—	_	_	-11.7
	11.00(17)	_	—	-	—	-11./
DyII	-11.36(15)	-	—	-	—	-10.9
DyIII	_	-	—	-	—	-10.9
HoIII	-	-	-	-	-	-11.55
ErII	_	-	—	-	—	-11.09
ErIII	_	-	_		—	-11.09
TmII	_	_	_	_	_	-11.9
YbH	_	_	_	_	_	-11.1
LuII	_	_	_	_	_	-11.93
HfII	_	_	_	_	_	-11.30
ToI	_		_		_	10.10
Tai	_	_	—	-	—	-12.18
W1	—	-	—	-	—	-11.37
WII	-	-	-	-	-	-11.37
ReI	-	-	—	-	—	-11.76
IrI		-	-	-	-	-10.68
PtI	_	-	—	-	_	-10.4
HgI	_	-	_		—	-10.85
ThII	_	_	_	_	_	-11.96
ThIII	_	_	_	_	_	-11.96
UII	_	_	_		_	-12.56

Таблица А1.1: (продолжение)

Звезда	$T_{\rm eff}$		$\log(N_{\rm e}$	$N_{\rm tot}$		Ссылка
HD		Si	Ca	Cr	Fe	
	Hop	мальни	ые звез,	ды гла	зной по	оследовательности
165908	6100	-4.86	-6.12	-6.60	-4.89	Adelman et al. (2000)
30810	6109	-4.51	-5.66		-4.62	Varenne, Monier (1999)
222368	6177	-4.11	-5.76	-6.30	-4.51	Adelman et al. (1997)
27383	6179	-4.42	-5.90		-4.50	Varenne, Monier (1999)
28363	6348	-4.54	-5.53		-4.58	Varenne, Monier (1999)
27991	6431	-4.46	-5.60		-4.55	Varenne, Monier (1999)
30869	6456	-4.50	-5.55		-4.60	Varenne, Monier (1999)
49933	6500	-4.86	-6.01	-6.82	-5.04	Ryabchikova et al. (2009)
28406	6530	-4.45	-5.72		-4.65	Varenne, Monier (1999)
27848	6548	-4.37	-5.66		-4.55	Varenne, Monier (1999)
31845	6631	-4.39	-5.70		-4.57	Varenne, Monier (1999)
28736	6646	-4.37	-5.63		-4.54	Varenne, Monier (1999)
27534	6675	-4.40	-5.77		-4.64	Varenne, Monier (1999)
18404	6680	-4.38	-5.63		-4.55	Varenne, Monier (1999)
27561	6681	-4.44	-5.79		-4.65	Varenne, Monier (1999)
26345	6690	-4.37	-5.65		-4.55	Varenne, Monier (1999)
61421	6696	-4.46	-5.73		-4.56	Varenne, Monier (1999)
28911	6710	-4.40	-5.70		-4.61	Varenne, Monier (1999)
128167	6744	-4.73	-6.05	-6.60	-4.89	Adelman et al. (1997)
185395	6810	-4.23	-5.65	-6.20	-4.40	Adelman et al. (1997)
26015	6828	-4.40	-5.71		-4.60	Varenne, Monier (1999)
26462	6874	-4.53	-5.76		-4.72	Varenne, Monier (1999)
37954	7150	-4.75	-5.92	-6.74	-4.91	Fossati et al. (2011)
32115	7250	-4.53	-5.71	-6.44	-4.63	Fossati et al. (2011)
27819	8189	-4.42	-5.67		-4.60	Varenne, Monier (1999)
60825	9000	-4.41	-5.67	-6.21	-4.46	Adelman, Davis Philip (1996)
89021	9000	-4.36	-5.57	-5.81	-4.31	Adelman (1999)
1280	9000	-4.48	-5.36	-6.14	-4.26	Kocer et al. (2003)
198001	9050	-4.46	-6.18	-6.37	-4.64	Kocer et al. (2003)
14252	9260	-4.76	-5.75	-6.48	-4.54	Hill, Landstreet (1993)
154029	9325	-4.35	-5.22	-5.78	-4.12	Adelman (1999)
47105	9440	-4.43	-5.65	-6.25	-4.41	Hill, Landstreet (1993)
114330	9500	-4.27	-5.40	-6.19	-4.36	Добричев и др. (1987)
176437	9550	-4.49	-6.44	-6.52	-4.91	Adelman et al. (2001)
87887	9875	-4.63	-5.89	-6.32	-4.54	Pintado, Adelman (2003)
123299	10025	-4.94	-6.33	-6.35	-4.81	Adelman (1994)
85504	10135	-4.45	-5.08	-5.88	-4.33	Adelman, Davis Philip (1996)
193432	10250	-4.69	-5.55	-6.13	-4.52	Adelman (1991)

Звезда	$T_{\rm eff}$		$\log(N$	(N_{tot})		Ссылка
HD		Si	Ca	Cr	Fe	
192907	10325	-4.61	-5.76	-6.22	-4.61	Adelman (1996)
209459	10400	-4.49	-5.98	-6.20	-4.50	Fossati et al. (2009)
185872	10750	-4.70	-6.11	-6.22	-4.58	Adelman (1999)
38899	10825	-4.51	-5.33	-6.41	-4.57	Adelman (1991)
222173	11600	-4.64	-6.18	-6.46	-4.72	Kocer et al. (2003)
155763	12500	-4.48	-5.82	-6.67	-4.69	Adelman (1998)
17081	12800	-4.41	-5.77	-6.41	-4.58	Fossati et al. (2009)
179761	12900	-4.40	-5.66	-6.64	-4.80	Adelman (1991)
204754	13000	-4.40	-5.86	-6.34	-4.82	Птицын, Рябчикова (1986)
197392	13306	-4.43	-5.49	-6.62	-4.70	Adelman et al. (2001)
195810	13679	-4.45	-5.77	-6.23	-4.56	Kocer et al. (2003)
215573	14051	-4.57	-6.24	-6.52	-4.76	Pintado, Adelman (2003)
188892	14156	-4.64	-5.37	-6.87	-4.85	Adelman (1998)
138764	14230	-4.60	-5.24	-6.61	-4.59	Adelman, Davis Philip (1994)
41692	14330	-4.29		-6.58	-4.63	Adelman, Davis Philip (1996)
28114	14690	-4.47		-6.63	-5.01	Adelman, Davis Philip (1996)
147394	15000	-4.50	-5.78	-6.59	-4.71	Adelman et al. (2001)
		-	Непуль	сируюг	цие Ар	ЗВезды
115708	7550	-4.42	-6.01	-6.10	-4.75	Семенко и др. (2008)
178892	7700	-3.60	-6.8	-5.50	-5.20	Ryabchikova et al. (2006a)
29578	7800	-4.01	-5.11	-4.83	-3.98	Ryabchikova et al. (2004)
62140	7900	-4.70		-4.60	-4.20	Рябчикова и др. (2001)
18610	8100	-3.82	-5.18	-4.18	-3.83	Ryabchikova et al. (2004)
138633	8200	-3.98	-5.21	-4.01	-4.00	Титаренко и др. (2013)
204411	8400	-4.13	-5.17	-4.80	-4.04	Ryabchikova et al.(2005)
188041	8500	-4.00	-4.82	-4.07	-3.80	Ryabchikova et al. (2004)
108945	8800	-4.53	-6.50	-4.80	-4.04	Саванов и др. (1996)
110066	9000	-3.25	-5.03	-3.48	-3.10	Ryabchikova et al. (2004)
8441	9130	-5.10	-6.44	-4.16	-3.64	Титаренко и др. (2012)
212385	9200	-4.29	-4.60	-4.52	-3.77	Ryabchikova et al. (2004)
66318	9200	-3.20	-6.40	-3.80	-3.05	Bagnulo et al. (2003)
153882	9250			-4.20	-3.13	Ryabchikova et al. (1995)
133792	9400	-4.40	-6.30	-3.77	-3.25	Kochukhov et al.(2006)
103498	9500	-3.65	-5.91	-3.31	-3.01	Joshi et al. (2010)
183806	10070	-3.90	-4.70	-4.07	-3.43	Ryabchikova et al. (2004)
108662	10300	-5.45		-3.11	-3.02	Саванов и др. (1996)
116458	10300	-4.25		-4.64	-3.70	Nishimura et al. (2004)
40312	10450	-3.47		-3.90	-3.35	van Rensbergen et al. (1984)
170973	10750	-3.51	-5.66	-4.56	-2.90	Kato (2003)
192913	10900	-4.06	-5.33	-4.46	-3.36	Lopez-Garcia, Adelman (1999)

Таблица А1.2. (Продолжение)

Звезда	$T_{\rm eff}$		$\log(N$	$/N_{tot})$		Ссылка
HD		Si	Ca	Cr	Fe	
26385	11100	-3.29		-5.13	-3.95	Bolcal et al. (1991)
133029	11200	-3.36	-5.72	-4.15	-3.28	Lopez-Garcia, Adelman (1999)
144897	11250	-3.8	-6.0	-4.3	-3.5	Ryabchikova et al. (2006b)
43819	11300	-3.88	-5.12	-5.02	-3.57	Lopez-Garcia, Adelman (1994)
112413	11600	-4.12		-5.30	-3.60	Kochukhov et al. (2002)
10221	11900	-3.36		-4.43	-3.36	Глаголевский и др. (2005)
22316	12000	-5.20		-4.98	-3.54	Nielsen, Wahlgren (2000)
25823	12750	-3.71		-5.02	-3.94	Bolcal et al. (1987)
45583	13000	-3.38		-4.35	-3.12	Семенко и др. (2008)
37808	13100	-4.19	-5.68	-4.87	-3.47	Leone et al. (1993)
79158	13300	-4.20		-5.20	-3.50	Wade et al. (2006)
5737	13900	-4.07		-5.58	-4.00	Lopez-Garcia et al. (2001)
168733	14000	-4.19		-5.20	-3.29	Ryabchikova et al. (2004)
			Пульси	рующи	e roAp	звезды
101065	6400	-4.43	-6.74	-6.45	-5.68	Shulyak et al. (2010)
213637	6400	-4.85	-6.14	-6.60	-5.37	Kochukhov (2003)
217522	6750	-4.27	-6.14	-6.54	-5.64	Gelbmann(1998)
122970	6930	-4.45	-5.48	-6.03	-4.47	Ryabchikova et al. (2000)
185256	7130	-4.75	-5.76	-5.55	-4.88	Бойко (2011)
24712	7250	-4.43	-5.69	-5.82	-5.00	Ryabchikova et al. $(1997b)$
203932	7450	-4.39	-5.17	-5.64	-4.42	Gelbmann et al. (1997)
128898	7500	-4.51	-5.29	-5.70	-4.61	Kochukhov et al. (2009)
176232	7550	-4.19	-5.28	-5.10	-4.18	Ryabchikova et al. (2000)
137949	7550	-4.24	-5.10	-5.29	-4.20	Ryabchikova et al. (2004)
115226	7650	-4.6	-5.4	-5.0	-4.55	Kochukhov et al. (2008)
75445	7700	-4.29	-5.68	-5.50	-4.44	Ryabchikova et al. (2004)
166473	7700	-4.10	-5.34	-5.43	-4.32	Gelbmann et al. (2000)
201601	7700	-4.42	-5.40	-5.55	-4.30	Ryabchikova et al. $(1997a)$
12098	7800	-4.50	-5.20	-5.20	-4.25	Ryabchikova et al. (2004)
116114	8000	-4.41	-5.22	-5.40	-4.19	Ryabchikova et al. (2004)
137909	8000	-4.09	-5.10	-4.64	-3.80	Ryabchikova et al. (2004)
177765	8000	-3.63	-4.64	-4.36	-3.40	Alentiev et al. (2012)
60435	8100	-4.13	-5.12	-5.12	-4.30	Ryabchikova et al. (2004)
42659	8100	-4.90	-5.60	-5.20	-4.60	Рябчикова и др. (2001)

Таблица А1.2. (Продолжение)

Приложение №2 к Главе III

Таблица A2.1: Атомные параметры линий, использованных в стратификационном анализе. Данные взяты из базы данных VALD. В случае отсутствия параметра Штарковского уширения в VALD, использовалась аппроксимационная формула Cowley (1971).

ion	λ [Å]	$\log gf$	$E_{\rm low}, \Im { m B}$	$\log \gamma_{\mathrm{Stark}}$
Mg I	3336.674	-1.071	2.717	approx
Mg I	4167.271	-0.745	4.679	-5.74
Mg I	4702.991	-0.440	4.346	-4.46
Mg I	4730.029	-2.347	4.346	approx
Mg I	5172.684	-0.393	2.712	-5.47
Mg I	5528.405	-0.498	4.346	-4.46
Mg I	5711.088	-1.724	4.346	approx
Mg I	6318.717	-1.730	5.108	approx
Mg II	3104.71	-0.030	8.864	-3.97
Mg II	3104.72	-1.330	8.864	-3.97
Mg II	3104.80	-0.190	8.864	-3.97
Mg II	4481.126	0.749	8.864	-4.70
Mg II	4481.150	-0.553	8.864	-4.70
Mg II	4481.325	0.594	8.864	-4.70
Mg II	7877.054	0.391	9.996	-4.54
Mg II	7896.366	0.650	9.999	-4.54
				1
Mg II	8234.636	0.032	9.999	-4.77
Mg II Si I	8234.636 5517.533	$0.032 \\ -2.492$	9.999 5.080	-4.77 -4.46
Mg II Si I Si I	8234.636 5517.533 5690.425	$\begin{array}{r} 0.032 \\ -2.492 \\ -1.769 \end{array}$	9.999 5.080 4.930	-4.77 -4.46 -4.57
Mg II Si I Si I Si I	8234.636 5517.533 5690.425 5701.104	$\begin{array}{r} 0.032 \\ -2.492 \\ -1.769 \\ -1.760 \end{array}$	$\begin{array}{r} 9.999 \\ 5.080 \\ 4.930 \\ 4.930 \end{array}$	-4.77 -4.46 -4.57 -4.74
Mg II Si I Si I Si I Si I	8234.636 5517.533 5690.425 5701.104 5708.400	$\begin{array}{r} 0.032 \\ -2.492 \\ -1.769 \\ -1.760 \\ -1.320 \end{array}$	9.999 5.080 4.930 4.930 4.930	-4.77 -4.46 -4.57 -4.74 -4.74
Mg II Si I Si I Si I Si I Si I Si I	8234.636 5517.533 5690.425 5701.104 5708.400 5772.146	$\begin{array}{r} 0.032 \\ -2.492 \\ -1.769 \\ -1.760 \\ -1.320 \\ -1.600 \end{array}$	9.999 5.080 4.930 4.930 4.930 5.082	-4.77 -4.46 -4.57 -4.74 -4.74 -4.06
Mg II Si I Si I Si I Si I Si I Si I Si I	8234.636 5517.533 5690.425 5701.104 5708.400 5772.146 5780.384	$\begin{array}{r} 0.032 \\ -2.492 \\ -1.769 \\ -1.760 \\ -1.320 \\ -1.600 \\ -2.350 \end{array}$	9.999 5.080 4.930 4.930 4.930 5.082 4.920	-4.77 -4.46 -4.57 -4.74 -4.74 -4.74 -4.06 -4.18
Mg II Si I Si I Si I Si I Si I Si I Si I S	8234.636 5517.533 5690.425 5701.104 5708.400 5772.146 5780.384 5948.541	$\begin{array}{r} 0.032\\ -2.492\\ -1.769\\ -1.760\\ -1.320\\ -1.600\\ -2.350\\ -1.230\end{array}$	$\begin{array}{r} 9.999\\ \overline{5.080}\\ 4.930\\ 4.930\\ 4.930\\ 5.082\\ 4.920\\ 5.082\end{array}$	$\begin{array}{c} -4.77 \\ \hline -4.46 \\ -4.57 \\ -4.74 \\ -4.74 \\ -4.06 \\ -4.18 \\ -4.45 \end{array}$
Mg II Si I Si I Si I Si I Si I Si I Si I S	8234.636 5517.533 5690.425 5701.104 5708.400 5772.146 5780.384 5948.541 6142.487	$\begin{array}{r} 0.032 \\ -2.492 \\ -1.769 \\ -1.760 \\ -1.320 \\ -1.600 \\ -2.350 \\ -1.230 \\ -1.420 \end{array}$	$\begin{array}{r} 9.999\\ \hline 5.080\\ 4.930\\ 4.930\\ 4.930\\ 5.082\\ 4.920\\ 5.082\\ 5.620\end{array}$	$\begin{array}{c} -4.77 \\ \hline -4.46 \\ -4.57 \\ -4.74 \\ -4.74 \\ -4.06 \\ -4.18 \\ -4.45 \\ -3.57 \end{array}$
Mg II Si I Si I Si I Si I Si I Si I Si I S	8234.636 5517.533 5690.425 5701.104 5708.400 5772.146 5780.384 5948.541 6142.487 6155.134	$\begin{array}{r} 0.032\\ -2.492\\ -1.769\\ -1.760\\ -1.320\\ -1.600\\ -2.350\\ -1.230\\ -1.420\\ -0.800\end{array}$	$\begin{array}{r} 9.999\\ \hline 5.080\\ 4.930\\ 4.930\\ 4.930\\ 5.082\\ 4.920\\ 5.082\\ 5.620\\ 5.619\end{array}$	$\begin{array}{c} -4.77 \\ \hline -4.46 \\ -4.57 \\ -4.74 \\ -4.74 \\ -4.06 \\ -4.18 \\ -4.45 \\ -3.57 \\ -3.16 \end{array}$
Mg II Si I Si I Si I Si I Si I Si I Si I S	8234.636 5517.533 5690.425 5701.104 5708.400 5772.146 5780.384 5948.541 6142.487 6155.134 6244.468	$\begin{array}{r} 0.032\\ -2.492\\ -1.769\\ -1.760\\ -1.320\\ -1.600\\ -2.350\\ -1.230\\ -1.420\\ -0.800\\ -1.093\end{array}$	$\begin{array}{r} 9.999\\ \hline 5.080\\ 4.930\\ 4.930\\ 4.930\\ 5.082\\ 4.920\\ 5.082\\ 5.620\\ 5.619\\ 5.610\end{array}$	$\begin{array}{c} -4.77 \\ \hline -4.46 \\ -4.57 \\ -4.74 \\ -4.74 \\ -4.06 \\ -4.18 \\ -4.45 \\ -3.57 \\ -3.16 \\ -3.49 \end{array}$
Mg II Si I Si I Si I Si I Si I Si I Si I S	8234.636 5517.533 5690.425 5701.104 5708.400 5772.146 5780.384 5948.541 6142.487 6155.134 6244.468 4130.872	$\begin{array}{r} 0.032\\ -2.492\\ -1.769\\ -1.760\\ -1.320\\ -1.600\\ -2.350\\ -1.230\\ -1.420\\ -0.800\\ -1.093\\ -0.824\end{array}$	$\begin{array}{r} 9.999\\ \hline 5.080\\ 4.930\\ 4.930\\ 4.930\\ 5.082\\ 4.920\\ 5.082\\ 5.620\\ 5.619\\ 5.610\\ 9.839\end{array}$	$\begin{array}{c} -4.77 \\ \hline -4.46 \\ -4.57 \\ -4.74 \\ -4.74 \\ -4.06 \\ -4.18 \\ -4.45 \\ -3.57 \\ -3.16 \\ -3.49 \\ -4.87 \end{array}$
Mg II Si I Si I Si I Si I Si I Si I Si I S	8234.636 5517.533 5690.425 5701.104 5708.400 5772.146 5780.384 5948.541 6142.487 6155.134 6244.468 4130.872 4130.894	$\begin{array}{r} 0.032\\ -2.492\\ -1.769\\ -1.760\\ -1.320\\ -1.600\\ -2.350\\ -1.230\\ -1.420\\ -0.800\\ -1.093\\ -0.824\\ 0.476\end{array}$	$\begin{array}{r} 9.999\\ \hline 5.080\\ 4.930\\ 4.930\\ 4.930\\ 5.082\\ 4.920\\ 5.082\\ 5.620\\ 5.619\\ 5.610\\ 9.839\\ 9.839\end{array}$	$\begin{array}{c} -4.77 \\ \hline -4.46 \\ -4.57 \\ -4.74 \\ -4.74 \\ -4.06 \\ -4.18 \\ -4.45 \\ -3.57 \\ -3.16 \\ -3.49 \\ -4.87 \\ -4.87 \end{array}$
Mg II Si I Si I Si I Si I Si I Si I Si I S	8234.636 5517.533 5690.425 5701.104 5708.400 5772.146 5780.384 5948.541 6142.487 6145.134 6244.468 4130.872 4130.894 4190.707	$\begin{array}{r} 0.032\\ -2.492\\ -1.769\\ -1.760\\ -1.320\\ -1.600\\ -2.350\\ -1.230\\ -1.420\\ -0.800\\ -1.093\\ -0.824\\ 0.476\\ -0.350\end{array}$	$\begin{array}{r} 9.999\\ \hline 5.080\\ 4.930\\ 4.930\\ 4.930\\ 5.082\\ 4.920\\ 5.082\\ 5.620\\ 5.610\\ 9.839\\ 9.839\\ 9.839\\ 13.492 \end{array}$	$\begin{array}{c} -4.77 \\ \hline -4.46 \\ -4.57 \\ -4.74 \\ -4.74 \\ -4.06 \\ -4.18 \\ -4.45 \\ -3.57 \\ -3.16 \\ -3.49 \\ -4.87 \\ -4.87 \\ -4.87 \\ -4.00 \end{array}$
Mg II Si I Si I Si I Si I Si I Si I Si I S	8234.636 5517.533 5690.425 5701.104 5708.400 5772.146 5780.384 5948.541 6142.487 6155.134 6244.468 4130.872 4130.894 4190.707 4621.418	$\begin{array}{r} 0.032\\ -2.492\\ -1.769\\ -1.760\\ -1.320\\ -1.600\\ -2.350\\ -1.230\\ -1.420\\ -0.800\\ -1.093\\ -0.824\\ 0.476\\ -0.350\\ -0.540\end{array}$	$\begin{array}{r} 9.999\\ \hline 5.080\\ 4.930\\ 4.930\\ 4.930\\ 5.082\\ 4.920\\ 5.082\\ 5.620\\ 5.619\\ 5.610\\ 9.839\\ 9.839\\ 13.492\\ 12.256\end{array}$	$\begin{array}{c} -4.77 \\ \hline -4.46 \\ -4.57 \\ -4.74 \\ -4.74 \\ -4.06 \\ -4.18 \\ -4.45 \\ -3.57 \\ -3.16 \\ -3.49 \\ -4.87 \\ -4.87 \\ -4.87 \\ -4.00 \\ -3.53 \end{array}$
Mg II Si I Si I Si I Si I Si I Si I Si I S	8234.636 5517.533 5690.425 5701.104 5708.400 5772.146 5780.384 5948.541 6142.487 6142.487 6155.134 6244.468 4130.872 4130.894 4190.707 4621.418 4621.696	$\begin{array}{r} 0.032\\ -2.492\\ -1.769\\ -1.760\\ -1.320\\ -1.600\\ -2.350\\ -1.230\\ -1.420\\ -0.800\\ -1.093\\ -0.824\\ 0.476\\ -0.350\\ -0.540\\ -1.680\end{array}$	$\begin{array}{r} 9.999\\ \hline 5.080\\ 4.930\\ 4.930\\ 4.930\\ 5.082\\ 4.920\\ 5.082\\ 5.620\\ 5.610\\ 9.839\\ 9.839\\ 9.839\\ 13.492\\ 12.256\\ 12.256\\ 12.256\end{array}$	$\begin{array}{c} -4.77 \\ \hline -4.46 \\ -4.57 \\ \hline -4.74 \\ -4.74 \\ \hline -4.06 \\ -4.18 \\ \hline -4.45 \\ -3.57 \\ \hline -3.57 \\ \hline -3.16 \\ \hline -3.49 \\ \hline -4.87 \\ \hline -4.87 \\ \hline -4.87 \\ \hline -4.87 \\ \hline -4.00 \\ \hline -3.53 \\ \hline -3.53 \end{array}$

ion	λ [Å]	$\log a f$	Elow	$\log \gamma_{\rm Stark}$
Si II	5055.984	0.523	10.074	-4.79
Si II	5056.317	-0.492	10.074	-4.79
Si II	5957.559	-0.225	10.067	-5.02
Si II	5978.930	0.084	10.074	-5.01
Si II	6347.109	0.149	8.121	-5.31
Si II	6371.371	-0.080	8.121	-5.32
CaI	4226.728	0.244	0.000	-6.030
Ca I	4512.268	-1.900	2.526	-4.149
Ca I	5512.980	-0.464	2.933	-4.053
Ca I	5590.114	-0.571	2.521	-6.071
Ca I	5857.451	0.240	2.933	-5.420
Ca I	5867.562	-1.570	2.933	-4.705
Ca I	6122.217	-0.316	1.886	-5.320
Ca I	6162.173	-0.090	1.899	-5.320
Ca I	6163.755	-1.286	2.521	-4.998
Ca I	6166.439	-1.142	2.521	-5.000
Ca I	6169.042	-0.797	2.523	-4.997
Ca I	6169.563	-0.478	2.526	-4.994
Ca I	6439.075	0.390	2.526	-6.072
Ca I	6449.808	-0.502	2.521	-6.071
Ca I	6455.598	-1.340	2.523	-6.072
Ca I	6462.567	0.262	2.523	-6.072
Ca I	6471.662	-0.686	2.526	-6.072
Ca I	6499.650	-0.818	2.523	-6.072
Ca I	6717.681	-0.524	2.709	-4.895
Ca II	3158.869	0.241	3.123	-4.900
Ca II	3179.333	0.499	3.151	-4.900
Ca II	4716.743	-2.490	7.047	-4.449
Ca II	4721.022	-2.330	7.050	-4.449
Ca II	5021.138	-2.330	7.050	-4.449
Ca II	5021.138	-0.420	8.438	-2.915
Ca II	5021.138	-1.207	7.515	-4.612
Ca II	5285.266	-1.147	7.505	-4.631
Ca II	5339.188	-0.079	8.438	-3.700
Ca II	6456.875	0.410	8.438	-3.711
Ca II	8201.722	0.368	7.505	-4.600
Ca II	8248.79	0.556	7.515	-4.600
Ca II	8254.721	-0.398	7.515	-4.600
Ca II	8912.068	0.637	7.047	-5.100
Ca II	8927.356	0.811	7.050	-5.100
Sc II *	3567.696	-0.476	0.000	-6.407

Таблица А2.1: продолжение.

ion	λ [Å]	$\log gf$	$E_{\rm low}$	$\log \gamma_{\mathrm{Stark}}$
Sc II*	3580.925	-0.149	0.000	-6.405
Sc II *	4246.822	0.242	0.315	-6.372
Sc II *	4294.767	-1.391	0.605	-6.723
Sc II*	4400.389	-0.536	0.605	-6.680
Sc II *	4415.557	-0.668	0.595	-6.680
Sc II *	4431.352	-1.969	0.605	-6.680
Sc II	5239.813	-0.765	1.455	-6.367
Sc II	5334.240	-2.203	1.497	-6.735
Sc II	5641.001	-1.131	1.500	-6.599
Sc II	6604.601	-1.309	1.357	-6.711
Ti I	5014.187	-1.320	0.000	-6.319
Ti I	5016.161	-0.574	0.848	-6.169
Ti II	3192.556	-0.230	3.838	-5.621
Ti II	3224.236	0.050	1.584	-6.681
Ti II	3340.341	-0.540	0.113	-6.756
Ti II	3388.751	-1.100	1.237	-6.590
Ti II	3500.333	-2.100	0.122	-6.565
Ti II	4417.713	-1.190	1.165	-6.665
Ti II	4798.531	-2.680	1.080	-6.580
Ti II	5005.157	-2.720	1.566	-6.601
Ti II	5013.686	-2.190	1.582	-6.540
Ti II	5490.692	-2.430	1.566	-6.614
Ti II	7953.540	-1.415	4.009	-6.636
V II	3102.289	0.448	0.368	-6.589
V II*	3120.728	0.318	2.557	-6.561
V II	3265.885	-0.220	2.370	-6.584
V II*	3267.704	0.283	1.071	-6.581
V II	3477.215	-0.619	2.601	-6.701
V II	3493.157	-1.408	1.071	-6.607
V II	3577.229	-1.656	2.376	-6.604
V II*	4023.378	-0.689	1.805	-6.643
V II	4036.777	-1.594	1.476	-6.663
Cr I	4261.337	-0.700	2.914	-5.230
Cr I	4274.797	-0.231	0.000	-6.240
Cr I	4622.449	-0.040	3.551	-6.061
Cr I	4626.173	-1.320	0.968	-6.297
Cr I	4651.284	-1.460	0.983	-6.297
Cr I	4697.042	-1.060	2.708	-6.209
Cr I	5265.148	-0.529	3.428	-5.324
Cr I	5296.691	-1.400	0.983	-6.120
Cr I	5297.377	0.167	2.900	-4.31

Таблица А2.1: продолжение.

ion	λ [Å]	$\log gf$	$E_{\rm low}$	$\log \gamma_{\mathrm{Stark}}$
Cr I	5298.016	-0.060	2.900	-4.05
Cr I	5298.272	-1.150	0.983	-6.117
Cr I	5298.494	-1.060	3.449	-5.344
Cr I	5344.757	-1.290	1.004	-6.112
Cr I	5348.315	-1.290	1.004	-6.112
Cr I	6661.075	-0.190	4.193	-5.002
Cr I	6729.734	-0.713	4.389	-4.430
Cr II	3180.693	-0.319	2.543	-5.30
Cr II	3410.546	-1.764	4.781	-6.461
Cr II	3421.202	-0.714	2.421	-5.31
Cr II	3421.591	-2.230	4.294	-6.647
Cr II	3421.616	-1.653	4.316	-6.645
Cr II	3422.732	-0.409	2.455	-5.32
Cr II	4592.050	-1.473	4.074	-6.65
Cr II	4634.070	-1.236	4.072	-6.649
Cr II	5046.429	-1.749	8.227	-5.91
Cr II	5246.768	-2.560	3.714	-6.660
Cr II	5267.030	-3.064	4.042	-6.72
Cr II	5297.606	-0.320	10.754	approx
Cr II	5305.865	-2.160	3.827	-6.599
Cr II	5305.929	-0.178	10.760	-5.348
Cr II	5308.425	-260	4.071	-6.643
Cr II	5310.687	-2.408	4.072	-6.643
Cr II	5334.869	-1.826	4.072	-6.643
Cr II	5550.353	0.355	10.893	-5.355
Cr II	5563.985	0.325	10.845	-5.373
Cr II	5564.741	0.510	10.893	-5.364
Cr II	5569.110	0.860	10.872	-5.36
Cr II	5569.617	0.710	10.904	-5.36
Cr II	6050.242	0.216	11.098	-4.683
Cr II	6053.466	-2.230	4.745	-6.63
Cr II	6068.023	-1.736	6.686	-6.56
Cr II	6070.100	-2.990	4.750	-6.63
Cr II	6112.261	-2.980	4.745	-6.656
Cr II	6138.721	-2.160	6.484	-6.73
Cr II	6147.154	-2.892	4.756	-6.66
Cr II	6336.263	-3.759	4.073	-6.638
Mn I	3258.410	-0.510	2.187	-6.186
Mn I	3268.720	-0.380	4.194	-5.692
Mn I	3270.344	-0.300	4.247	-6.183
Mn I*	4502.213	-0.345	2.920	-4.112

Таблица А2.1: продолжение.

•	1 1	1 <i>f</i>	E	1
10n	λ [A]	$\log gf$	E _{low}	$\log \gamma_{\text{Stark}}$
Mn I [≁]	4754.042	-0.080	2.282	-5.460
Mn I [*]	4701.512	-0.138	2.953	-0.147
Mn I [↑]	6021.819	0.034	3.075	-5.357
Mn II*	3419.408	-1.136	4.936	-6.654
Mn II*	3441.985	-0.360	1.776	-6.736
Mn II*	3497.525	-1.430	1.848	-6.735
Mn II*	4518.956	-1.329	6.645	-6.641
Fe I	3354.059	-1.169	2.858	-6.091
Fe I	5014.942	-0.303	3.943	-5.570
Fe I	5022.236	-0.530	3.984	-5.621
Fe I	5022.789	-2.196	2.990	-6.313
Fe I	5023.186	-1.600	4.283	-5.207
Fe I	5030.778	-2.830	3.237	-6.277
Fe I	5136.093	-2.120	4.186	-5.790
Fe I	5198.711	-2.135	2.223	-6.185
Fe I	5217.389	-1.070	3.211	-5.450
Fe I	5236.204	-1.497	4.186	-5.700
Fe I	5253.462	-1.44	3.283	-5.460
Fe I	5269.537	-1.321	0.859	-6.300
Fe I	5281.790	-0.834	3.038	-5.489
Fe I	5326.142	-2.071	3.573	-6.209
Fe I	5383.369	0.645	4.312	-5.180
Fe I	5397.127	-1.993	0.915	-6.300
Fe I	5397.190	-1.16	4.446	-5.260
Fe I	5410.910	0.398	4.473	-5.060
Fe I	5424.068	0.520	4.320	-4.790
Fe I	5434.524	-2.122	1.011	-6.303
Fe I	5436.296	-1.540	4.386	-4.997
Fe I	5445.042	-0.020	4.386	-4.582
Fe I	5546.506	-1.310	4.371	-6.109
Fe I	5560.21	-1.050	4.434	-4.323
Fe I	5576.089	-1.000	3.430	-5.491
Fe I	5775.081	-1.15	4.220	-5.560
Fe I	6136.615	-1.400	2.453	-6.327
Fe I	6137.692	-1.403	2.588	-6.112
Fe I	6335.330	-2.177	3.686	-5.467
Fe I	6336.824	-0.856	2.198	-5.467
Fe I	6419.949	-0.240	4.733	-4.240
Fe II	4923.927	-1.320	2.891	-6.583
Fe II	5018.440	-1.340	2.891	-6.583
Fe II	5018.669	-4.010	6.138	-6.537
	-			

Таблица А2.1: продолжение.

ion	λ [Å]	$\log gf$	$E_{\rm low}$	$\log \gamma_{\mathrm{Stark}}$
Fe II	5022.420	-0.070	10.348	-5.367
Fe II	5022.583	-4.180	5.571	-6.622
Fe II	5022.792	-0.090	10.288	-5.552
Fe II	5022.931	-2.240	9.112	-6.556
Fe II	5030.630	0.431	10.288	-5.891
Fe II	5045.114	-0.002	10.308	-4.984
Fe II	5061.718	0.284	10.308	-5.189
Fe II	5127.866	-2.451	5.571	-6.520
Fe II	5132.669	-4.094	2.807	-6.530
Fe II	5169.033	-1.250	2.891	-6.590
Fe II	5197.480	-3.134	5.960	-6.700
Fe II	5197.577	-2.10	3.230	-6.600
Fe II	5278.938	-2.680	5.911	-6.696
Fe II	5291.666	0.544	10.480	-5.468
Fe II	5303.395	-1.530	8.185	-5.822
Fe II	5325.553	-3.324	3.221	-6.603
Fe II	5440.068	-2.739	6.729	-6.500
Fe II	5425.257	-3.16	3.199	-6.600
Fe II	5549.001	-0.186	10.523	-5.330
Fe II	5567.842	-1.870	6.730	-6.578
Fe II	5549.001	-0.186	10.523	-5.330
Fe II	5961.705	0.670	10.678	-4.950
Fe II	6149.428	-2.840	3.889	-6.588
Fe II	6150.098	-4.820	3.221	-6.678
Fe II	6432.680	-3.687	2.891	-6.687
Fe II	6922.030	0.952	11.149	-5.590
Co I	3502.280	0.070	0.432	-6.300
Co I	3502.622	-1.240	0.174	-6.374
Co I *	4813.476	0.050	3.216	-5.627
Co I*	5342.700	0.690	4.021	-4.928
Co I *	5347.497	-0.160	4.149	-4.952
Co I*	6082.422	-0.520	3.514	-5.474
Co II *	3415.768	-1.740	2.203	-6.675
Co II *	3501.708	-0.970	2.203	-6.673
Ni I	3446.255	-0.392	0.109	-6.310
Ni I	3458.456	-0.223	0.212	-6.312
Ni I	3461.649	-0.347	0.025	-6.312
Ni I	3492.954	-0.250	0.109	-6.310
Ni I	3500.846	-1.279	0.165	-6.303
Ni I	3515.049	-0.211	0.109	-6.310
Ni I	4470.472	-0.310	3.399	-5.697

Таблица А2.1: продолжение.

ion	λ [Å]	$\log gf$	$E_{\rm low}$	$\log \gamma_{\text{Stark}}$
Ni I	4756.510	-0.270	3.480	-5.708
Ni I	5035.357	0.290	3.635	-5.231
Sr I	4607.32	0.283	0.000	approx
Sr I	4811.87	0.190	1.847	approx
Sr I	5504.17	0.090	2.259	approx
Sr I	6408.45	0.510	2.271	approx
Sr I	6503.99	0.320	2.259	approx
Sr II	3380.70	0.199	2.940	approx
Sr II	3464.45	0.487	3.040	approx
Sr II	3474.889	-0.460	3.040	approx
Sr II	4161.792	-0.502	2.940	approx
Sr II	4215.519	-0.145	0.000	-5.600
Sr II	4305.443	-0.136	3.040	-5.600
Sr II	8505.600	0.241	6.915	approx
Y II	3448.808	-1.410	0.409	approx
ΥIΙ	3467.873	-1.770	0.409	approx
Y II	3600.741	0.340	0.180	approx
ΥIΙ	3611.044	0.050	0.130	approx
Y II	4982.130	-1.320	1.033	approx
Y II	5087.420	-0.160	1.084	approx
Y II	5289.820	-1.680	1.033	approx
Y II	5320.780	-2.350	1.084	approx
Y II	5662.930	0.340	1.944	approx
Y II	5728.890	-1.150	1.839	approx
Y II	6832.478	-1.860	1.748	approx
Zr II	3479.017	-0.670	0.527	approx
Zr II	3499.571	-1.060	0.409	approx
Zr II	3505.482	0.030	1.532	approx
Zr II	3549.508	-0.720	1.236	approx
Zr II	3551.951	-0.360	0.095	approx
Zr II	3611.889	0.450	1.743	approx
Zr II	4149.198	-0.040	0.802	approx
Zr II	4179.808	-0.680	1.665	approx
Zr II	4440.453	-1.040	1.208	approx
Zr II	4442.500	-1.940	0.999	approx
Ba II	4166.000	-0.42	2.722	approx
Ba II	4524.925	-0.36	2.512	approx
Ba II	4554.029	0.17	0.000	approx
Ba II	5853.668	-1.00	0.604	approx
Ba II	6141.713	-0.076	0.704	approx
Ba II	6496.897	-0.377	0.604	approx

Таблица А2.1: продолжение.

ion	λ [Å]	$\log gf$	$E_{\rm low}$	$\log \gamma_{\mathrm{Stark}}$	
Pr II*	5002.438	-0.87	0.795	approx	
Pr II*	5110.763	0.32	1.148	approx	
Pr II*	5129.536	-0.13	0.648	approx	
Pr II*	5135.141	0.01	0.950	approx	
Pr II*	5292.620	-0.26	0.648	approx	
Pr II*	5322.772	-0.32	0.482	approx	
Pr II*	5681.882	-0.60	1.163	approx	
Pr II*	6017.799	-0.26	1.112	approx	
Pr II*	6165.940	-0.20	0.923	approx	
Pr II*	6656.826	0.08	1.823	approx	
Pr III	4910.823	-1.95	0.173	approx	
Pr III	4929.116	-2.07	0.359	approx	
Pr III	5284.693	-0.77	0.173	approx	
Pr III	5299.993	-0.72	0.359	approx	
Pr III	5844.408	-1.01	1.244	approx	
Pr III	5998.968	-1.87	1.173	approx	
Pr III	6053.004	-1.98	0.000	approx	
Pr III	6090.010	-0.87	0.359	approx	
Pr III	6160.233	-1.02	0.173	approx	
Pr III	6195.621	-1.07	0.000	approx	
Pr III	6500.044	-1.26	1.722	approx	
Pr III	6616.464	-1.50	1.549	approx	
Pr III	6692.247	-2.11	1.162	approx	
Pr III	6706.704	-1.49	0.552	approx	
Nd II	4061.080	0.55	0.471	approx	
Nd II	4706.543	-0.71	0.000	approx	
Nd II	4811.342	-1.01	0.064	approx	
Nd II	5033.507	-0.47	1.136	approx	
Nd II	5063.722	-0.62	0.976	approx	
Nd II	5077.154	-1.04	0.823	approx	
Nd II	5165.129	-0.74	0.680	approx	
Nd II	5311.453	-0.42	0.985	approx	
Nd II	5314.554	-0.33	0.985	approx	
Nd II	5319.815	-0.14	0.550	-5.82	
Nd II	5399.099	-1.41	0.932	approx	
Nd II	5533.827	-1.23	0.559	approx	
Nd II	6514.959	-1.88	0.182	approx	
Nd II	6636.182	-0.94	2.059	approx	
Nd II	6637.187	-0.84	1.452	approx	
Nd II	6637.956	-0.32	1.773	approx	
Nd II	6650.517	-0.11	1.953	approx	

Таблица А2.1: продолжение.

ion	λ [Å]	$\log gf$	$E_{\rm low}$	$\log \gamma_{\mathrm{Stark}}$
Nd II	6680.137	-0.72	1.686	approx
Nd III	4796.500	-1.65	0.141	approx
Nd III	5102.428	-0.62	0.296	approx
Nd III	5286.753	-1.90	0.631	approx
Nd III	5294.113	-0.69	0.000	approx
Nd III	5633.554	-2.22	0.141	approx
Nd III	5677.179	-1.45	0.631	approx
Nd III	5802.532	-1.71	0.296	approx
Nd III	5845.020	-1.18	0.631	approx
Nd III	5851.542	-1.55	0.460	approx
Nd III	5987.683	-1.26	0.460	approx
Nd III	6145.068	-1.33	0.296	approx
Nd III	6327.265	-1.41	0.141	approx
Nd III	6550.231	-1.49	0.000	approx
Nd III	6690.830	-2.46	0.460	approx

Таблица А2.1: продолжение.

Звездочками отмечены линии, для которых была рассчитана сверхтонкая структура. Постоянные сверхтонкой структуры были взяты из следующих рвбот: Villemoes et al. (1992) (Sc II), Armstrong et al. (2011) (V II), Blackwell-Whitehead et al. (2005) (Mn I), Holt et al. (1999) (Mn II), Pickering (1996) (Co I), Bergemann et al. (2010) (Co II), Ginibre (1989) (Pr II)

λ [Å]	E_{low} (eV)	Переход	
PrII			
4222.93^{1*}	0.05	$4f^{3}5d{}^{5}\mathrm{I}^{\mathrm{o}}_{5}$ - $4f^{3}6p{}^{5}\mathrm{K}_{6}$	$2 - 118^2$
4449.83^{1*}	0.20	$4f^{3}5d{}^{5}\mathrm{I_{6}^{\circ}}$ - $4f^{3}6p{}^{5}\mathrm{K_{6}}$	3 - 118
5002.44	0.80	$4f^35d{}^5\mathrm{K}^\circ_7$ - $4f^36p{}^3\mathrm{K}_6$	12 - 129
5110.76^{*}	1.15	$4f^{3}5d{}^{5}\mathrm{L}_{10}^{\circ}$ - $4f^{3}6p{}^{5}\mathrm{K}_{9}$	26 - 143
5129.54^{*}	0.65	$4f^{3}5d{}^{5}\mathrm{K_{6}^{\circ}}$ - $4f^{3}6p{}^{5}\mathrm{I_{5}}$	10 - 121
5135.14^{*}	0.95	$4f^35d{}^5\mathrm{K}_8^\circ$ - $4f^36p{}^5\mathrm{K}_8$	16 - 134
5259.73^{1*}	0.63	$4f^35d{}^5\mathrm{L}^\circ_7$ - $4f^36p{}^5\mathrm{K}_6$	9 - 118
5292.62^{*}	0.65	$4f^{3}5d{}^{5}\mathrm{K_{6}^{\circ}}$ - $4f^{3}6p{}^{5}\mathrm{K_{6}}$	10 - 118
5322.77^{*}	0.48	$4f^35d{}^5\mathrm{L}_6^\circ$ - $4f^36p{}^5\mathrm{K}_5$	6 - 110
5681.88	1.16	$4f^35d{}^5\mathrm{H_5^\circ}$ - $4f^25d^2{}^3\mathrm{G}_5$	26 - 134
6017.80^{*}	1.11	$4f^35d{}^5\mathrm{G}_2^\circ$ - $4f^36p{}^5\mathrm{H}_3$	23 - 126
6165.94^{*}	0.92	$4f^35d{}^5\mathrm{I}^{\mathrm{o}}_4$ - $4f^36p{}^5\mathrm{I}_4$	15 - 116
6656.83^{*}	1.82	$4f^{3}5d{}^{3}\mathrm{L_{9}^{o}}$ - $4f^{3}6p{}^{3}\mathrm{K_{8}}$	60 - 146
PrIII			
4910.82	0.17	$4f^{3}{}^{4}\mathrm{I}^{\circ}_{11/2}$ - $4f^{2}5d{}^{4}\mathrm{H}_{11/2}$	296 - 322
4929.12	0.36	$4f^{3}{}^{4}\mathrm{I}^{\circ}_{13/2}$ - $4f^{2}5d{}^{4}\mathrm{H}_{13/2}$	297 - 325
5284.69	0.17	$4f^{3}{}^{4}\mathrm{I}^{\circ}_{11/2}$ - $4f^{2}5d{}^{4}\mathrm{H}_{9/2}$	296 - 319
5299.99	0.36	$4f^{3} {}^{4}\mathrm{I}^{\circ}_{13/2}$ - $4f^{2}5d {}^{4}\mathrm{H}_{11/2}$	297 - 322
5844.41	1.24	$4f^{3}{}^{2}\mathrm{H}^{\circ}_{9/2}$ - $4f^{2}5d{}^{2}\mathrm{G}_{7/2}$	300 - 332
5998.97	0.17	$4f^{3} {}^{4}\mathrm{I}^{\circ}_{11/2}$ - $4f^{2}5d {}^{4}\mathrm{G}_{9/2}$	296 - 315
6053.00	0.00	$4f^{3}{}^{4}\mathrm{I}^{\circ}_{9/2}$ - $4f^{2}5d{}^{4}\mathrm{G}_{7/2}$	295 - 311
6090.01	0.36	$4f^{3} {}^{4}\mathrm{I}^{\circ}_{13/2}$ - $4f^{2}5d {}^{4}\mathrm{H}_{11/2}$	297 - 318
6160.23	0.17	$4f^{3} {}^{4}\mathrm{I}^{\circ}_{11/2}$ - $4f^{2}5d {}^{4}\mathrm{H}_{9/2}$	296 - 314
6195.62	0.00	$4f^{3} {}^{4}\mathrm{I}^{\circ}_{9/2}$ - $4f^{2}5d {}^{4}\mathrm{H}_{7/2}$	295 - 310
6500.04	1.72	$4f^{32}\mathrm{G}^{\circ}_{7/2}$ - $4f^{2}5d^{2}\mathrm{F}_{5/2}$	306 - 334
6616.46	1.55	$4f^{3\ 2}\mathrm{H_{11/2}^{\circ}}$ - $4f^{2}5d\ ^{4}\mathrm{F_{9/2}^{\circ}}$	303 - 332
6692.25	1.16	$4f^{3}{}^{4}\mathrm{F}^{\circ}_{3/2}$ - $4f^{2}5d{}^{4}\mathrm{F}_{3/2}$	299 - 326
6706.70	0.55	$4f^{3} {}^{4}I^{\circ}_{15/2}$ - $4f^{2}5d {}^{2}I_{13/2}$	298 - 318

Таблица А2.2: Список исследованных линий Pr II и Pr III.

¹ Линии, используемые только при анализе атмосферы Солнца.

 2 Номер уровня в модели атома.

* Линии с известным сверхтонким расщеплением.

	1	1 1	
λ [Å]	E_{low} (eV)	Переход	
Nd II			
4706.54	0.00	$4f^46s{}^6\mathrm{I}_{7/2}$ - $4f^35d6s{}^6\mathrm{H}^\circ_{5/2}$	1 - 101
4811.34	0.06	$4f^46s{}^6\mathrm{I}_{9/2}$ - unknown $\mathrm{T}^\circ_{7/2}$	2 - 101
6514.96	0.18	$4f^46s{}^6\mathrm{I}_{11/2}$ - $4f^35d6s\mathrm{T^{\circ}_{9/2}}$	3 - 84
4061.08	0.47	$4f^46s{}^6\mathrm{I}_{15/2}$ - $4f^46p{}^6\mathrm{K}^{\circ}_{17/2}$	7 - 122
5533.82	0.56	$4f^46s{}^4\mathrm{I}_{13/2}$ - $4f^35d^2{}^4\mathrm{K}^\circ_{13/2}$	8 - 104
5319.82	0.55	$4f^45d{}^6\mathrm{L}_{11/2}$ - $4f^46p{}^6\mathrm{K}_{9/2}^\circ$	8 - 105
5165.13	0.68	$4f^45d{}^6\mathrm{L}_{13/2}$ - unknown $\mathrm{T}^\circ_{11/2}$	10 - 110
5077.15	0.82	$4f^45d{}^6 ext{L}_{15/2}$ - $4f^35d6s ext{T}^\circ_{13/2}$	12 - 114
5399.09	0.93	$4f^45d{}^6\mathrm{I}_{7/2}$ - unknown $\mathrm{T}^\circ_{5/2}$	14 - 114
5311.45	0.99	$4f^45d{}^6\mathrm{K}_{13/2}$ - $4f^46p{}^6\mathrm{I}_{11/2}^\circ$	15 - 115
5063.72	0.98	$4f^45d{}^6\mathrm{L}_{17/2}$ - unknown $\mathrm{T}^\circ_{15/2}$	15 - 118
5033.51	1.14	$4f^45d{}^6\mathrm{L}_{19/2}$ - unknown $\mathrm{T}^{\mathrm{o}}_{17/2}$	20 - 123
6637.19	1.45	$4f^45d\ {}^6\mathrm{H}_{9/2}$ - $4f^46p\ {}^6\mathrm{I}^\circ_{11/2}$	37 - 115
6680.14	1.69	$4f^45d{}^4\mathrm{K_{13/2}}$ - $4f^46p{}^4\mathrm{K_{13/2}^\circ}$	51 - 122
6637.96	1.77	$4f^45d^4\mathrm{L}_{17/2}$ - unknown $\mathrm{T}^\circ_{15/2}$	58 - 125
6650.52	1.95	$4f^45d~^4L_{19/2}$ - $4f^46p~T^{\circ}_{17/2}$	75 - 129
6636.18	2.06	$4f^45d{}^4\mathrm{K}_{17/2}$ - $4f^46p{}^4\mathrm{K}_{17/2}^\circ$	83 - 132
Nd III			
5294.10	0.00	$4f^{4}{}^{5}\mathrm{I}_{4}$ - $4f^{3}5d{}^{5}\mathrm{I}_{4}^{\circ}$	248 - 263
6550.23	0.00	$4f^4{}^5\mathrm{I}_4$ - $4f^35d{}^5\mathrm{K}_5^\circ$	248 - 257
4796.49	0.14	$4f^{4}{}^{5}\mathrm{I}_{5}$ - $4f^{3}5d{}^{5}\mathrm{I}_{6}^{\circ}$	249 - 270
5633.55	0.14	$4f^{4}{}^{5}\mathrm{I}_{5}$ - $4f^{3}5d{}^{5}\mathrm{I}_{4}^{\circ}$	249 - 263
6327.26	0.14	$4f^{4}{}^{5}\mathrm{I}_{5}$ - $4f^{3}5d{}^{5}\mathrm{K}_{6}^{\circ}$	249 - 260
6145.07	0.30	$4f^{4}{}^{5}\mathrm{I}_{6}$ - $4f^{3}5d{}^{5}\mathrm{K}_{7}^{\circ}$	250 - 263
6690.83	0.46	$4f^{4}{}^{5}\mathrm{I}_{7}$ - $4f^{3}5d{}^{5}\mathrm{K}_{7}^{\circ}$	251 - 263
5987.68	0.46	$4f^{4}{}^{5}\mathrm{I}_{7}$ - $4f^{3}5d{}^{5}\mathrm{K}_{8}^{\circ}$	251 - 266
5845.02	0.63	$4f^{4}{}^{5}\mathrm{I}_{8}$ - $4f^{3}5d{}^{5}\mathrm{K}_{9}^{\circ}$	252 - 270
5677.18	0.63	$4f^{4}{}^{5}I_{8} - 4f^{3}5d{}^{5}I_{7}^{\circ}$	252 - 271
5286.75	0.63	$4f^{4}{}^{5}\mathrm{I_{8}}$ - $4f^{3}5d{}^{5}\mathrm{I_{7}^{o}}$	252 - 273

Таблица А2.3: Список исследованных линий Nd II и Nd III.

* Терм с неизвестным орбитальным квантовым числом L обозначен буквой Т.

Приложение № 3 к Главе IV

Таблица АЗ.1: Результаты пульсационного анализа отдельных линий в спектре HD 24712. Приведены длина волн ценра линии в Å, амплитуда пульсации A (м с⁻¹), ее ошибка σ_A , и период пульсаций P с соответствующей ошибкой σ_P , определенной методом наименьших квадратов. Соответствующая вероятность периодического сигнала Prob. вычислялась согласно Horne & Baliunas (1986).

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Длина волны	Период				Отождествление	
Hydrogen HARPS HarPS 4340.468 59 15 6.237 0.041 0.847 Hγ 4861.330 91 11 6.115 0.018 1.000 Hβ 6562.799 175 10 6.140 0.009 1.000 Hα Na HARPS 5895.996 37 12 3.831 0.018 0.368 Na1 Mg HARPS 5172.701 22 6 3.862 0.017 0.644 Mg1 Si 5701.115 113 40 5.501 0.043 0.122 Si 1 5056.005 20 7 3.426 0.018 0.053 Si 11 6347.113 41 10 9.187 0.086 0.907 Si 10 S HARPS 5 5 5 Si 1 5 5 4696.202 316 35 6.126 0.017 1.000 S1+ Nd 111 4696.205 Ca HARPS 5 7	Å	Α	σ_A	P(min)	σ_P	Prob.	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Hydrogen						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HARPS				0.044	- -	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4340.468	59	15	6.237	0.041	0.847	$H\gamma$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4861.330	91	11	6.115	0.018	1.000	Hβ
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6562.799	175	10	6.140	0.009	1.000	$H\alpha$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	N.						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Na						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HARPS	97	10	9 0 9 1	0.010	0.900	N
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5895.996	37	12	3.831	0.018	0.308	INAT
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Me						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	UADDC						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5172 701	99	6	3 869	0.017	0.644	Mat
Si HARPS 5701.115 113 40 5.501 0.043 0.122 Si1 5056.005 20 7 3.426 0.018 0.053 Si II 5978.939 82 23 4.418 0.022 0.700 Si II 6347.113 41 10 9.187 0.086 0.907 Si II S HARPS 4696.202 316 35 6.126 0.017 1.000 S1+ Nd III 4696.205 Ca HARPS 4226.735 27 8 10.281 0.123 0.481 Cai core 4425.444 16 5 6.207 0.049 0.388 Cai 5349.471 25 7 3.302 0.014 0.616 Cai 5349.471 25 7 3.302 0.014 0.616 Cai 5590.124 34 13 3.065 0.016 0.376 Cai 5867.564 147 36 5.794 0.033 0.925 Cai bl.? 6122.224 28 7 6.149 0.040 0.825 Cai 6162.198 34 10 4.562 0.024 0.574 Cai 6162.198 34 10 4.562 0.024 0.574 Cai 6162.198 34 10 4.562 0.024 0.574 Cai 6162.592 21 6 6.221 0.046 0.568 Cai 6439.107 30 7 6.175 0.038 0.926 Cai 6437.793 48 12 6.116 0.038 0.896 Cai 6493.793 48 12 6.116 0.038 0.896 Cai 6493.655 26 8 10.094 0.132 0.303 Cai 6499.655 26 18 10.094 0.132 0.303 Cai 6499.655 26 18 10.094 0.132 0.303 Cai 6499.655 26 13 1.6 6.112 0.047 0.411 Cai 5285.280 51 1.6 6.112 0.047 0.411	5172.701	22	0	5.802	0.017	0.044	Mg I
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Si						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HARPS						
5056.005 20 7 3.426 0.013 0.122 Si II 5056.005 20 7 3.426 0.013 0.122 Si II 5978.939 82 23 4.418 0.022 0.700 Si II 6347.113 41 10 9.187 0.086 0.907 Si II 8 HARPS 4696.202 316 35 6.126 0.017 1.000 S 1+ Nd III 4696.205 Ca HARPS 4226.735 27 8 10.281 0.123 0.481 Ca 1 core 4425.444 16 5 6.207 0.049 0.388 Ca1 5390.124 34 13 3.065 0.016 0.376 Ca1 5857.467 30 9 8.749 0.094 0.503 Ca1 5867.564 147 36 5.794 0.033 0.925 Ca 1 bl. ? 6122.224 28 7 6.149 0.040 0.825 Ca1 6439.107 30 7 6.175 0.038 0.926 Ca1	5701 115	113	40	5 501	0.043	0 1 2 2	Sit
5978.939 82 23 4.418 0.025 0.036 511 6347.113 41 10 9.187 0.086 0.907 Si II S HARPS 4696.202 316 35 6.126 0.017 1.000 S 1+ Nd III 4696.205 Ca HARPS 4226.735 27 8 10.281 0.123 0.481 Ca 1 core 4425.444 16 5 6.207 0.049 0.388 Ca 1 5390.124 34 13 3.065 0.016 0.376 Ca 1 5867.564 147 36 5.794 0.033 0.925 Ca 1 6162.198 34 10 4.562 0.024 0.574 Ca 1 6439.107 30 7 6.175 0.038 0.926 Ca 1 6439.107 30 7 6.175 0.038 0.926 Ca 1 6442.592 21 6 6.221 0.026 0.149 Ca 1	5056.005	20	40 7	3 426	0.040	0.122	Sitt
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5978 939	82	23	4 418	0.010	0.000	Siu
S HARPS 4696.202 316 35 6.126 0.017 1.000 S I+ Nd III 4696.205 Ca HARPS 4226.735 27 8 10.281 0.123 0.481 Ca I core 4425.444 16 5 6.207 0.049 0.388 Ca I 5349.471 25 7 3.302 0.014 0.616 Ca I 590.124 34 13 3.065 0.016 0.376 Ca I 5857.467 30 9 8.749 0.094 0.503 Ca I 5867.564 147 36 5.794 0.033 0.925 Ca I bl. ? 6122.224 28 7 6.149 0.040 0.825 Ca I 6162.198 34 10 4.562 0.024 0.574 Ca I 6133.760 63 22 4.329 0.026 Ca I Ca I 6443.9107 30 7 6.175 0.038 0.926 Ca I	6347 113	41	10	9 187	0.022	0.907	Siu
S HARPS 4696.202 316 35 6.126 0.017 1.000 S1+ Nd III 4696.205 Ca HARPS 4226.735 27 8 10.281 0.123 0.481 Ca1 core 4425.444 16 5 6.207 0.049 0.388 Ca1 5349.471 25 7 3.302 0.014 0.616 Ca1 5590.124 34 13 3.065 0.016 0.376 Ca1 5857.467 30 9 8.749 0.094 0.503 Ca1 5867.564 147 36 5.794 0.033 0.925 Ca1 bl. ? 6122.224 28 7 6.149 0.040 0.825 Ca1 6163.760 63 22 4.329 0.026 0.149 Ca1 6462.592 21 6 6.221 0.046 0.568 Ca1 6471.673 56 13 6.082 0.035 0.941 Ca1 6493.793 48 12 6.116 0.038 0.	0041.110	- 11	10	5.101	0.000	0.501	5111
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S	I					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	HARPS						
Ca HARPS 4226.735 27 8 10.281 0.123 0.481 Caircore 4425.444 16 5 6.207 0.049 0.388 Cair 5349.471 25 7 3.302 0.014 0.616 Cair 5590.124 34 13 3.065 0.016 0.376 Cair 5857.467 30 9 8.749 0.094 0.503 Cair 5867.564 147 36 5.794 0.033 0.925 Cair bl. ? 6122.224 28 7 6.149 0.040 0.825 Cair 6162.198 34 10 4.562 0.024 0.574 Cair 6163.760 63 22 4.329 0.026 0.149 Cair 6439.107 30 7 6.175 0.038 0.926 Cair 6442.592 21 6 6.221 0.046 0.568 Cair 6493.793	4696.202	316	35	6.126	0.017	1.000	S 1+ Nd 111 4696.205
Ca HARPS 4226.735 27 8 10.281 0.123 0.481 Caircore 4425.444 16 5 6.207 0.049 0.388 Cair 5349.471 25 7 3.302 0.014 0.616 Cair 5590.124 34 13 3.065 0.016 0.376 Cair 5857.467 30 9 8.749 0.094 0.503 Cair 5867.564 147 36 5.794 0.033 0.925 Cair bl. ? 6122.224 28 7 6.149 0.040 0.825 Cair 6162.198 34 10 4.562 0.024 0.574 Cair 6163.760 63 22 4.329 0.026 0.149 Cair 6439.107 30 7 6.175 0.038 0.926 Cair 6442.592 21 6 6.221 0.046 0.568 Cair 6493.793 48 12 6.116 0.038 0.896 Cair 6499.65							
HARPS 4226.735 27 8 10.281 0.123 0.481 Cat core 4425.444 16 5 6.207 0.049 0.388 Cat 5349.471 25 7 3.302 0.014 0.616 Cat 5590.124 34 13 3.065 0.016 0.376 Cat 5857.467 30 9 8.749 0.094 0.503 Cat 5867.564 147 36 5.794 0.033 0.925 Cat bl. ? 6122.224 28 7 6.149 0.040 0.825 Cat 6162.198 34 10 4.562 0.024 0.574 Cat 6163.760 63 22 4.329 0.026 0.149 Cat 6439.107 30 7 6.175 0.038 0.926 Cat 6471.673 56 13 6.082 0.035 0.941 Cat 6493.793 48 12 6.116 0.038 0.896 Cat 6499.655 26	Ca	I					I
4226.735 27 8 10.281 0.123 0.481 Сал соге 4425.444 16 5 6.207 0.049 0.388 Сал 5349.471 25 7 3.302 0.014 0.616 Сал 5590.124 34 13 3.065 0.016 0.376 Сал 5857.467 30 9 8.749 0.094 0.503 Сал 5867.564 147 36 5.794 0.033 0.925 Сал bl. ? 6122.224 28 7 6.149 0.040 0.825 Сал 6162.198 34 10 4.562 0.024 0.574 Сал 6163.760 63 22 4.329 0.026 0.149 Сал 6439.107 30 7 6.175 0.038 0.926 Сал 6462.592 21 6 6.221 0.046 0.568 Сал 6493.793 48 12 6.116 0.038 0.896 Сал 6499.655 26 8 10.094	HARPS						
4425.444 16 5 6.207 0.049 0.388 Сат 5349.471 25 7 3.302 0.014 0.616 Сат 5590.124 34 13 3.065 0.016 0.376 Сат 5857.467 30 9 8.749 0.094 0.503 Сат 5867.564 147 36 5.794 0.033 0.925 Сат D. 6122.224 28 7 6.149 0.040 0.825 Car Car 6162.198 34 10 4.562 0.024 0.574 Car 6163.760 63 22 4.329 0.026 0.149 Car 6439.107 30 7 6.175 0.038 0.926 Car 6442.592 21 6 6.221 0.046 0.568 Car 6471.673 56 13 6.082 0.035 0.941 Car 6493.793 48 12 6.116 0.038 0.896 Car 6499.655 26 8	4226.735	27	8	10.281	0.123	0.481	Ca i core
5349.471 25 7 3.302 0.014 0.616 Сат 5590.124 34 13 3.065 0.016 0.376 Сат 5857.467 30 9 8.749 0.094 0.503 Сат 5867.564 147 36 5.794 0.033 0.925 Сат bl. ? 6122.224 28 7 6.149 0.040 0.825 Сат 6162.198 34 10 4.562 0.024 0.574 Сат 6163.760 63 22 4.329 0.026 0.149 Сат 6439.107 30 7 6.175 0.038 0.926 Сат 6462.592 21 6 6.221 0.046 0.568 Сат 6493.793 48 12 6.116 0.038 0.896 Сат 6499.655 26 8 10.094 0.132 0.303 Сат 3933.655 126 21 6.134 0.025	4425.444	16	5	6.207	0.049	0.388	Саг
5590.124 34 13 3.065 0.016 0.376 Сат 5857.467 30 9 8.749 0.094 0.503 Сат 5867.564 147 36 5.794 0.033 0.925 Сат bl. ? 6122.224 28 7 6.149 0.040 0.825 Сат 6162.198 34 10 4.562 0.024 0.574 Сат 6163.760 63 22 4.329 0.026 0.149 Сат 6439.107 30 7 6.175 0.038 0.926 Сат 6462.592 21 6 6.221 0.046 0.568 Сат 6471.673 56 13 6.082 0.035 0.941 Сат 6493.793 48 12 6.116 0.038 0.896 Сат 6499.655 26 8 10.094 0.132 0.303 Сат 3933.655 126 21 6.134 0.025 0.999 Сат 5285.280 51 16 6.112 <	5349.471	25	7	3.302	0.014	0.616	Саг
5857.467 30 9 8.749 0.094 0.503 Сат 5867.564 147 36 5.794 0.033 0.925 Сат bl. ? 6122.224 28 7 6.149 0.040 0.825 Сат 6162.198 34 10 4.562 0.024 0.574 Сат 6163.760 63 22 4.329 0.026 0.149 Сат 6439.107 30 7 6.175 0.038 0.926 Сат 6462.592 21 6 6.221 0.046 0.568 Сат 6471.673 56 13 6.082 0.035 0.941 Сат 6493.793 48 12 6.116 0.038 0.896 Сат 6499.655 26 8 10.094 0.132 0.303 Сат 3933.655 126 21 6.134 0.025 0.999 Сат 5285.280 51 16 6.112 0.04	5590.124	34	13	3.065	0.016	0.376	Саг
5867.564 147 36 5.794 0.033 0.925 Сат bl. ? 6122.224 28 7 6.149 0.040 0.825 Сат 6162.198 34 10 4.562 0.024 0.574 Сат 6163.760 63 22 4.329 0.026 0.149 Сат 6439.107 30 7 6.175 0.038 0.926 Сат 6462.592 21 6 6.221 0.046 0.568 Сат 6471.673 56 13 6.082 0.035 0.941 Сат 6493.793 48 12 6.116 0.038 0.896 Сат 6499.655 26 8 10.094 0.132 0.303 Сат 3933.655 126 21 6.134 0.025 0.999 Сат 5285.280 51 16 6.112 0.047 0.411 Сат Sc HARPS 51 16 6.112 <td>5857.467</td> <td>30</td> <td>9</td> <td>8.749</td> <td>0.094</td> <td>0.503</td> <td>Саг</td>	5857.467	30	9	8.749	0.094	0.503	Саг
6122.224 28 7 6.149 0.040 0.825 Сат 6162.198 34 10 4.562 0.024 0.574 Сат 6163.760 63 22 4.329 0.026 0.149 Сат 6439.107 30 7 6.175 0.038 0.926 Сат 6462.592 21 6 6.221 0.046 0.568 Сат 6471.673 56 13 6.082 0.035 0.941 Сат 6493.793 48 12 6.116 0.038 0.896 Сат 6499.655 26 8 10.094 0.132 0.303 Сат 6499.655 26 8 10.094 0.132 0.303 Сат 6717.705 53 55 3.060 0.027 0.005 Сат 3933.655 126 21 6.134 0.025 0.999 Сат 5285.280 51 16 6.112 0.047 0.411 Сат Sc Н Н 8 12 <	5867.564	147	36	5.794	0.033	0.925	Caıbl.?
6162.198 34 10 4.562 0.024 0.574 Сат 6163.760 63 22 4.329 0.026 0.149 Сат 6439.107 30 7 6.175 0.038 0.926 Сат 6462.592 21 6 6.221 0.046 0.568 Сат 6471.673 56 13 6.082 0.035 0.941 Сат 6493.793 48 12 6.116 0.038 0.896 Сат 6499.655 26 8 10.094 0.132 0.303 Сат 6499.655 26 8 10.094 0.132 0.303 Сат 6499.655 126 21 6.134 0.025 0.999 Сат 3933.655 126 21 6.134 0.025 0.999 Сат 5285.280 51 16 6.112 0.047 0.411 Сат Sc 6.112 0.047 0.411 Сат	6122.224	28	7	6.149	0.040	0.825	Саг
6163.760 63 22 4.329 0.026 0.149 Сат 6439.107 30 7 6.175 0.038 0.926 Сат 6462.592 21 6 6.221 0.046 0.568 Сат 6471.673 56 13 6.082 0.035 0.941 Сат 6493.793 48 12 6.116 0.038 0.896 Сат 6499.655 26 8 10.094 0.132 0.303 Сат 6717.705 53 55 3.060 0.027 0.005 Сат 3933.655 126 21 6.134 0.025 0.999 Сат 5021.158 52 16 3.952 0.019 0.423 Сат 5285.280 51 16 6.112 0.047 0.411 Сат Sc НАЯРS 51 16 6.112 0.047 0.411 Сат	6162.198	34	10	4.562	0.024	0.574	Сал
6439.107 30 7 6.175 0.038 0.926 Сал 6462.592 21 6 6.221 0.046 0.568 Сал 6471.673 56 13 6.082 0.035 0.941 Сал 6493.793 48 12 6.116 0.038 0.896 Сал 6499.655 26 8 10.094 0.132 0.303 Сал 6717.705 53 55 3.060 0.027 0.005 Сал 3933.655 126 21 6.134 0.025 0.999 Сал соге 5021.158 52 16 3.952 0.019 0.423 Сал 5285.280 51 16 6.112 0.047 0.411 Сал Sc НАRPS 51 16 6.112 0.047 0.411 Сал	6163.760	63	22	4.329	0.026	0.149	Сал
6462.592 21 6 6.221 0.046 0.568 Сал 6471.673 56 13 6.082 0.035 0.941 Сал 6493.793 48 12 6.116 0.038 0.896 Сал 6499.655 26 8 10.094 0.132 0.303 Сал 6717.705 53 55 3.060 0.027 0.005 Сал 3933.655 126 21 6.134 0.025 0.999 Сал соге 5021.158 52 16 3.952 0.019 0.423 Сал 5285.280 51 16 6.112 0.047 0.411 Сал Sc HARPS 52 51 52 51 52 51	6439.107	30	7	6.175	0.038	0.926	Саг
6471.673 56 13 6.082 0.035 0.941 Сал 6493.793 48 12 6.116 0.038 0.896 Сал 6499.655 26 8 10.094 0.132 0.303 Сал 6717.705 53 55 3.060 0.027 0.005 Сал 3933.655 126 21 6.134 0.025 0.999 Сал 5021.158 52 16 3.952 0.019 0.423 Сал 5285.280 51 16 6.112 0.047 0.411 Сал Sc НАRPS 52 53 55 55 55 55 55 55	6462.592	21	6	6.221	0.046	0.568	Саг
6493.793 48 12 6.116 0.038 0.896 Сал 6499.655 26 8 10.094 0.132 0.303 Сал 6717.705 53 55 3.060 0.027 0.005 Сал 3933.655 126 21 6.134 0.025 0.999 Сал соге 5021.158 52 16 3.952 0.019 0.423 Сал 5285.280 51 16 6.112 0.047 0.411 Сал Sc HARPS 52 51 51 51 51 51 51 51	6471.673	56	13	6.082	0.035	0.941	Саг
6499.655 26 8 10.094 0.132 0.303 Са г 6717.705 53 55 3.060 0.027 0.005 Са г 3933.655 126 21 6.134 0.025 0.999 Са п соге 5021.158 52 16 3.952 0.019 0.423 Са п 5285.280 51 16 6.112 0.047 0.411 Са п Sc HARPS 52 52 53	6493.793	48	12	6.116	0.038	0.896	Саг
6717.705 53 55 3.060 0.027 0.005 Сал 3933.655 126 21 6.134 0.025 0.999 Сал соге 5021.158 52 16 3.952 0.019 0.423 Сал 5285.280 51 16 6.112 0.047 0.411 Сал Sc HARPS 52 52 52 52 52 52 53 53 53 53 53 53 53 53 55 53	6499.655	26	8	10.094	0.132	0.303	Саг
3933.655 126 21 6.134 0.025 0.999 Сан соге 5021.158 52 16 3.952 0.019 0.423 Сан 5285.280 51 16 6.112 0.047 0.411 Сан Sc HARPS 52 51	6717.705	53	55	3.060	0.027	0.005	Саг
5021.158 52 16 3.952 0.019 0.423 Сан 5285.280 51 16 6.112 0.047 0.411 Сан Sc HARPS 5 16 6.112 0.047 0.411 Сан	3933.655	126	21	6.134	0.025	0.999	Ca II core
5285.280 51 16 6.112 0.047 0.411 Сан Sc HARPS	5021.158	52	16	3.952	0.019	0.423	Сан
Sc HARPS	5285.280	51	16	6.112	0.047	0.411	Сан
HARPS	\mathbf{Sc}						
	HARPS						

Длина волны			Период			Отождествление
Ŷ			\mathbf{D}		D 1	
A	A	σ_A	P(min)	σ_P	Prob.	See. 1 Noles 4415 CO
4410.079 5230 807	143 251	12	0.130 6 135	0.013	1.000	SCII + NGIII 4415.00 SCII + Cell 5239.84
5526 831	53	11	6.027	0.010	0.986	Scu + Ceu 5526.86
5641.007	516	358	3 049	0.001	0.350	Scu
5657.908	80	20	9.500	0.092	0.854	Scu + Feu
000110000	00		0.000	0.002	01001	
Ti						I
UVES1						
3444.295	114	14	6.113	0.020	1.000	$\mathrm{Tiii} + \mathrm{Dyii}\; 3444.25$
3491.039	58	9	6.096	0.028	0.999	Тіп
HARPS	0.0	22	F 100	0.005	0.007	
4518.038	96	32	5.122	0.035	0.237	
4913.636	108	33 26	3.427	0.014	0.493	111 T:-
0010.182 4400.280	25	30	3.934 2.670	0.018	0.402	111 T:
4422.380	20	0 5	5.079 6.061	0.018	0.223	Tiu
4501 267	94	6	6 118	0.020	1 000	$T_{i}u + Nd uu 4501 23$
4529.513	13	5	7.566	0.082	0.095	Tiu
4563.774	30	3	6.177	0.018	1.000	Тіц
4583.409	90	24	6.083	0.039	0.820	Тіп
4708.683	37	13	9.331	0.119	0.086	Ti II
4805.105	35	8	6.149	0.033	0.976	Тіп
4911.212	27	8	8.466	0.085	0.581	Тіп
5005.194	63	19	7.388	0.067	0.449	Тіп
5013.706	56	13	8.238	0.061	0.974	Тіп
5129.176	22	6	3.418	0.013	0.845	Ti II
5185.918	19	3	6.127	0.028	0.998	Ti II
5226.562	17	4	6.160	0.036	0.937	Ti II
5418.794	58	12	8.912	0.066	0.992	Тіп
6491.602	70	23	8.052	0.085	0.162	Тіп
V						
V HARPS						
6119.500	197	78	3.072	0.013	0.122	VI
4564.593	33	9	6.197	0.040	0.855	VII
\mathbf{Cr}						
UVES1						
3484.117	35	9	6.119	0.043	0.622	Cr II
HARPS	-75	10	C 11C	0.001	1 000	G 11 2
4090.098	75	10	0.110 5.212	0.021	1.000	
4000.752	29 40	9 15	0.010 8 194	0.035	0.465	Cri
4626 191	30	10	3 848	0.082	0.330 0.153	Cri
4637.204	111	15	6.140	0.020 0.021	1.000	Cri
4649.436	57	16	6.100	0.043	0.685	Cri
4651.294	18	6	5.083	0.036	0.114	Cri
4652.170	20	5	5.063	0.029	0.768	Crı
4730.715	41	13	5.365	0.037	0.394	Cr I
4764.305	52	16	3.850	0.019	0.322	Cr i
4771.507	31	10	6.182	0.048	0.283	Cr 1?
5208.858	91	11	6.079	0.019	1.000	Cr I, Pr III 5208.51
5247.592	71	21	4.185	0.021	0.561	Crı
5296.695	46	12	4.407	0.020	0.858	Cri
5297.379	27	10	3.986	0.023	0.048	Cri
5348.324	47	15	6.091	0.048	0.354	Uri
5628.650 4588.800	209	63	4.912	0.029	0.559	
4502.062	14	2	5.548 5.149	0.016	0.292	
4092.003 4634 080	14	4 1	0.143 5.078	0.031	0.008	
4034.000 5153 509	46	4 19	6.098	0.040	0.828	Cr II asymm
5232.513	36	12	5.267	0.037	0.210	Cr II

Таблица АЗ.1: Продолжение
Длина волны			Период			Отождествление
Å	Δ	σ.	P(min)	<i>a</i> -	Prob	
5027 208	10 10	0 A 5	I (mm) 4 705	0.025	0.604	Cru
5246 802	19	17	4.705	0.025	0.094	Cru
5510 720	55	19	3 235	0.000	0.003	Cru
0010.720	00	15	5.255	0.015	0.140	Of II
Mn						
UVES1						
3441.972	15	5	9.739	0.143	0.020	Mnu
3482.887	15	6	4.059	0.028	0.003	Mnu
3488.658	15	6	8.778	0.140	0.000	Mn II
3497.512	29	13	4.460	0.043	0.000	Mnu
HARPS	-	-				
4754.052	24	7	5.714	0.040	0.433	Мпт
4761.516	37	11	9.623	0.114	0.478	Мпт
4765.875	59	13	7.456	0.049	0.976	Мпт
4766.430	38	10	6.090	0.039	0.852	Мпт
Fe						
UVES1						
3475.442	26	8	2.864	0.011	0.090	Fei
3540.099	90	17	6.076	0.032	0.997	Feı
3581.186	31	8	7.922	0.080	0.134	Feı
3606.679	29	11	7.489	0.101	0.003	Feı
3621.464	35	8	6.115	0.042	0.928	Feı
3621.709	97	36	5.404	0.048	0.036	Fei
3820.419	12	5	6.517	0.085	0.000	Fei
4202.039	15	5	6.520	0.069	0.000	Fei
4213.640	66	7	6.101	0.018	1.000	Fei
HARPS						
4045.823	49	8	6.107	0.026	0.999	Fei core
4202.039	19	5	6.164	0.037	0.918	Fei
4213.640	59	11	6.095	0.027	0.999	Fei
4484.226	49	8	6.134	0.024	0.999	Feı
4547.854	44	8	6.245	0.031	0.993	Fei
4637.522	31	10	6.036	0.047	0.252	Fei
4668.139	30	7	6.197	0.040	0.899	Feı
4729.015	130	32	3.805	0.014	0.908	Fei
4908.043	84	27	4.813	0.031	0.290	Feı
4909.370	128	19	6.082	0.022	1.000	Feıbl.
4910.331	23	7	6.855	0.060	0.297	Feı
4938.833	27	9	7.148	0.071	0.089	Fei
4950.121	73	18	6.061	0.036	0.920	Feıbl. ?
4966.101	25	9	3.579	0.019	0.054	Feı
4982.514	23	7	3.476	0.017	0.336	Feı
5049.834	27	8	5.336	0.034	0.578	Feı
5051.644	45	10	6.013	0.032	0.982	Feı
5068.782	25	9	2.927	0.012	0.030	Feı
5171.615	117	11	6.132	0.014	1.000	Feıbl.
5196.071	50	17	3.704	0.018	0.176	Feı
5198.714	56	22	4.901	0.038	0.017	Feı
5215.202	35	10	5.925	0.042	0.358	Feı
5217.407	39	13	7.137	0.070	0.135	Feı
5242.503	32	10	8.150	0.086	0.315	Fei
5253.477	60	18	7.375	0.067	0.498	Feı
5281.798	23	8	6.546	0.060	0.122	Feı
5383.380	29	12	8.747	0.128	0.003	Feı
5397.142	25	8	3.609	0.018	0.142	Fe 1
5405.783	12	4	5.806	0.052	0.020	Feı
5410.917	15	6	6.852	0.080	0.001	Fe 1
5415.211	17	4	5.104	0.030	0.706	Fe 1
5424.080	19	6	3.522	0.015	0.413	Feı
5434.535	23	8	3.376	0.017	0.083	Fe 1
5445.050	35	8	6.192	0.036	0.948	Fe 1+ Ce 11 5445.23

Таблица АЗ.1: Продолжение

Длина волны			Период			Отождествление
Å	Δ	σ	P(min)	đ	Prob	
5446 616	40	10	10.376	0.109	0.308	Fet
5462.968	18	6	3.628	0.017	0.150	Fei
5466.418	44	13	5.793	0.041	0.520	Fei
5560.217	106	34	5.406	0.037	0.250	Fei
5562.712	85	31	5.437	0.043	0.064	Fei
5576.094	34	10	5.111	0.032	0.488	Fei
5586.777	28	10	9.075	0.126	0.021	Feı
5615.656	18	5	7.360	0.067	0.499	Feı
5775.093	148	44	3.295	0.013	0.445	Feı
5862.370	70	22	3.457	0.014	0.481	Feı
5930.195	44	14	4.124	0.022	0.224	Feı
5987.078	76	22	6.740	0.053	0.536	Feı
6024.076	40	15	5.019	0.038	0.033	Feı
6137.714	49	14	3.903	0.017	0.697	Feı
6191.593	32	10	3.306	0.013	0.363	Feı
6393.628	35	12	6.662	0.063	0.003	Feı
6400.024	48	13	6.098	0.040	0.808	Feı
6411.671	61	21	3.491	0.016	0.081	Feı
6419.972	82	22	3.282	0.012	0.841	Feı
6495.004	21	8	7.994	0.094	0.013	Feı
6678.001	50	21	5.386	0.050	0.000	Feı
4555.897	12	4	6.472	0.060	0.068	Fe II
4635.331	36	9	4.905	0.024	0.892	FeII
4923.937	18	3	6.133	0.029	0.997	Fe 11+ Nd 11 4923.93
4993.357	31	11	3.729	0.020	0.080	Fe II
5018.455	14	2	6.137	0.027	0.996	Fe 11+ Ce 11 5018.45
5132.675	85	31	4.762	0.033	0.070	Fe II
5169.038	15	4	3.375	0.013	0.796	Fe II
5197.591	11	3	2.933	0.009	0.660	Fe II
5362.838	20	6	3.258	0.015	0.279	Fe II
5414.086	85	31	3.164	0.013	0.084	Fe II
5425.266	55	17	8.390	0.086	0.430	Fe II
6147.747	70	18	6.135	0.040	0.855	$\rm Fe{\scriptstyle II+}Tb{\scriptstyle III}6147.67$
6516.126	27	8	3.416	0.014	0.018	Fe II
6592.934	60	24	2.905	0.013	0.013	FeII
Co						
UVES1						
3412 622	26	9	4 623	0.034	0.034	Col
3455 228	26	11	4.566	0.004	0.004	Col
3489 393	23	8	9.626	0.041 0.154	0.000	Col
3491 296	25	ğ	4 200	0.029	0.005	Col
3564.947	30	11	7.690	0.105	0.004	Col
HARPS						
4588.732	183	35	6.064	0.028	0.998	Сот
4781.449	77	26	4.283	0.026	0.169	Сот
4792.852	23	7	3.333	0.014	0.309	Сот
4813.478	26	8	3.725	0.017	0.304	Сот
4813.969	69	22	2.987	0.009	0.314	Сот
5146.757	28	10	6.037	0.051	0.093	Сот
5254.649	39	9	9.069	0.079	0.944	Сот
5257.615	38	12	6.595	0.058	0.202	Сот
5280.626	25	9	4.160	0.024	0.057	Сот
5342.704	27	9	7.659	0.081	0.125	Сот
5343.395	40	14	3.970	0.022	0.064	Сот
5352.038	32	10	6.132	0.046	0.462	Сот
5444.585	59	18	4.040	0.020	0.424	Сот
5454.576	71	17	8.890	0.074	0.880	Сот
5483.949	80	24	4.346	0.023	0.624	Сот
5489.663	74	27	4.715	0.032	0.063	Сот
5590.734	138	44	4.675	0.028	0.385	Сот
5647.235	79	27	5.365	0.040	0.091	Сот

Таблица АЗ.1: Продолжение

Длина волны			Период			Отождествление
Å	Δ	σ.	P(min)	đa	Prob	
A	197	0 A 49	F (11111)	0 P	0.115	Car
0201.011	101	40	0.900 7 554	0.049 0.071	0.110	Col
4516 620	101	11	7.004 C 199	0.071	1.000	Cor
4510.050	01 20	11	0.152	0.021	1.000	Con
4009.248	30	10	3.560	0.015	0.301	Coll
4660.636	47	14	6.692	0.055	0.537	Coll
ът.						
N1						
UVESI						
3515.027	70	10	6.145	0.026	1.000	Nii
HARPS						1
5035.398	80	29	4.155	0.024	0.042	Nii
_						
Sr						
UVES1						
3380.722	25	8	6.965	0.023	0.817	Sr II
3474.902	114	8	6.116	0.012	1.000	Sr 11
HARPS						
4784.335	116	43	3.629	0.019	0.069	Sr 1
4811.889	125	30	9.133	0.081	0.929	Sr 1
4215.525	104	7	6.128	0.010	1.000	Sr 11 core
Y						
UVES1						
3549.001	71	9	6.133	0.022	0.999	YII
HARPS						
5693.659	185	73	10.158	0.166	0.008	Υι
4883.686	82	9	6.092	0.016	1.000	YII
4982.134	30	10	4.731	0.031	0.116	YII
5087.427	51	5	6.129	0.016	1.000	YII
5119.118	28	9	6.044	0.047	0.255	YII
5289.824	65	19	3.312	0.012	0.626	YII
5402.781	39	14	3.300	0.016	0.111	YII
5509.901	30	7	6.049	0.037	0.885	YII
5662.928	48	7	6.133	0.022	1.000	YII
5728.899	45	16	3.576	0.018	0.073	YII
6613.749	85	24	6.195	0.044	0.712	Y II bl.
Zr						'
HARPS						
5350.379	168	24	6.189	0.022	1.000	Zr 11?
Ba						1
HARPS						
4554.032	10	3	3.898	0.017	0.726	Ван
4934.071	8	2	6.103	0.049	0.298	Ван
5853.674	19	5	3.697	0.016	0.328	Ван
6141.718	17	5	3.379	0.013	0.602	Ван
6496.905	15	4	5.967	0.041	0.592	Ban
La						I
UVES1						
3517.010	88	5	6.110	0.011	1.000	Lam
HARPS						I
4526.097	113	9	6.160	0.013	1.000	Lau
4574.857	113	12°	6.164	0.017	1.000	Lan
4655.474	155	16	6.118	0.015	1.000	Lau
4662.504	151	15	6.108	0.015	1.000	Lau
4692 489	107	19	6.119	0.026	0.999	Lau
4740 261	170	19	6 140	0.011	1.000	Lau
4748 794	13/	16	6 169	0.010	1 000	Lau
4804 026	123	20	6 095	0.013	0 000	Ган
4921 802	146	20 19	6 1 2 2	0.024	1 000	Ган

Таблица АЗ.1: Продолжение

Длина волны			Период			Отождествление
8			$\mathbf{D}(\cdot,\cdot)$		D I	
A	A 80	σ_A	P(min)	σ_P	Prob.	I a tr
4980.857 5482 256	02 128	33	6.078	0.020 0.038	0.880	Lau
5797.557	93	15	6.103	0.025	0.999	Lau
5805.766	159	30	6.087	0.028	0.998	Lau
5808.295	144	32	6.101	0.033	0.973	Lan
6262.283	183	32	6.150	0.026	0.999	$La_{11} + Pr_{11} 6262.55$
6296.074	161	30	6.152	0.028	0.999	Lan
6320.376	84	13	6.136	0.023	1.000	Lan
6399.017	133	42	4.142	0.022	0.339	La 11
Ce						
UVESI	0.00	20	6 1 9 0	0.015	1 000	
3534.018	233	20	6.138	0.015	1.000	Cell
2205 770	231	23 47	0.154	0.017	1.000	C_{0} m T_{1}^{2} m 2205 780
3497 359	157	47 17	6 1 3 8	0.031	1 000	Сещ+ 11 п 5595.789
HARPS	102	14	0.150	0.010	1.000	Gem
4418.785	201	11	6.118	0.009	1.000	Сен
4515.832	111	18	6.131	0.024	0.999	Сен
4562.357	298	17	6.120	0.009	1.000	Сен
4591.093	200	19	6.118	0.014	1.000	Сеп
4914.919	199	23	6.102	0.018	1.000	Сеп
5077.853	189	22	6.106	0.017	1.000	Сеп
5147.554	201	31	6.107	0.023	1.000	Сен
5274.226	288	17	6.126	0.009	1.000	Сен
5451.102	295	18	6.123	0.009	1.000	Сен
5468.366	204	26	6.122	0.019	1.000	Сен
5975.808	165	34	6.105	0.031	0.994	Сен
6043.372	208	31	6.115	0.023	1.000	Сеп
Dn						
FT HARPS						
5002.436	272	43	6.120	0.024	0.999	Pru
5110.759	190	17	6.116	0.013	1.000	Pru
5129.506	242	20	6.116	0.012	1.000	PrII
5135.123	305	32	6.094	0.015	1.000	Prii
5152.243	272	17	6.131	0.009	1.000	\Pr II $+$ Nd III 5152.292
5292.598	215	20	6.127	0.015	1.000	PrII
5343.837	220	66	6.051	0.043	0.580	Pr II + Ce II 5343.90
5681.862	414	78	6.253	0.029	0.998	PrII
6017.753	255	43	6.115	0.025	0.999	PrII
6165.922	229	32	6.086	0.020	1.000	Pru
6584.514	247	62	6.090	0.037	0.925	Pru
6656.788	320	37	6.090	0.017	1.000	Pru
6673.390	125	19	6.091	0.022	1.000	Pru
6673.695	421	46	6.127	0.016	1.000	Pru
4910.816	332	20	6.124	0.009	1.000	Priii
4929.109	302	20	6.103	0.010	1.000	Pr III Du
5264.090	340 220	19	0.152	0.008	1.000	
5299.960	332 910	16	6 100	0.008	1.000	Friii Daur bl
5469 147	167	21	6 197	0.012	1.000	Priii
5765 251	358	46	6.112	0.019	1.000	Priii
5844.406	318	18	6.134	0.009	1.000	Priii
5956.040	307	14	6.122	0.007	1.000	Priii
5998.935	410	22	6.141	0.008	1.000	Priii
6052.995	402	23	6.141	0.009	1.000	PrIII
6090.018	372	23	6.126	0.009	1.000	PrIII
6160.238	346	18	6.121	0.008	1.000	PrIII
6195.616	351	19	6.133	0.008	1.000	PrIII
6500.019	386	33	6.128	0.013	1.000	PrIII
6501.488	310	26	6.112	0.012	1.000	PrIII

Таблица АЗ.1: Продолжение

Длина волны			Период			Отождествление
Å	A	σΛ	P(min)	σÞ	Prob.	
6578.880	384	33	6.117	0.013	1.000	Priii
6616.481	314	66	6.193	0.032	0.992	PrIII
6692.225	281	54	6.197	0.030	0.998	Priii
6706.708	368	27	6.114	0.011	1.000	PrIII
Nd						
UVES1						
3339.057	128	12	6.111	0.016	1.000	Ndu
3375.226	172	18	6.107	0.018	1.000	Nd II
4061.099	156	6	6.117	0.007	1.000	Nd II
4069.270	269	12	6.107	0.007	1.000	Nd II
4211.294	217	14	6.101	0.009	1.000	Nd 11
3433.305	28	8	6.128	0.050	0.075	Nd III + Cr II
3442.767	138	11	6.121	0.014	1.000	Nd III
3476.175	137	8	6.109	0.011	1.000	Nd III
3477.830	86	5	6.096	0.012	1.000	Nd III
3537.600	139	10	6.121	0.012	1.000	$\mathrm{Nd}\mathrm{III} + \mathrm{Dy}\mathrm{II}$
3561.860	132	13	6.134	0.017	1.000	Nd III + Ti II
3590.333	111	6	6.103	0.009	1.000	Nd III + Ce II
3597.625	129	7	6.119	0.009	1.000	Nd III
3603.965	183	13	6.123	0.013	1.000	Nd III
3612.330	225	14	6.118	0.011	1.000	$\mathrm{Nd}\mathrm{III}+\mathrm{La}\mathrm{II}$
3621.181	75	7	6.162	0.017	1.000	Nd III + Sm II Co II, Fe II
3644.374	134	9	6.108	0.012	1.000	Nd III
HARPS						
4061.091	229	14	6.125	0.009	1.000	Nd II
4438.990	253	18	6.142	0.011	1.000	Nd II
4462.982	324	16	6.132	0.008	1.000	NdII
4467.841	285	18	6.121	0.010	1.000	NdII
4556.722	309	27	6.131	0.013	1.000	Nd II
4706.545	313	18	6.119	0.009	1.000	Nd II Nd I
4/17.084	290	21	0.083	0.010	1.000	NG II Nd u
4752.200	210	20 45	6.087	0.014	1.000	Ndu
4705.290	200	40 18	6 1 2 5	0.019	1.000	Ndu
4799.419	290	17	6 123	0.010	1.000	Ndu
4811 342	374	21	6 1 2 6	0.003	1.000	Ndu
4818 968	336	36	6.083	0.000	1.000	Ndu
4828.566	338	27	6.126	0.012	1.000	Ndu
4947.010	291	21	6.131	0.011	1.000	Ndu
4948.996	171	16	6.126	0.014	1.000	Nd II
4959.120	351	19	6.133	0.008	1.000	Nd II
4989.932	370	18	6.139	0.008	1.000	Nd II
5033.499	310	19	6.121	0.009	1.000	Nd II
5077.143	284	18	6.129	0.010	1.000	Nd II
5089.818	279	17	6.102	0.009	1.000	Nd II
5092.790	316	18	6.130	0.009	1.000	Nd II
5096.509	274	17	6.139	0.010	1.000	Nd II
5130.586	322	17	6.135	0.008	1.000	Nd II
5132.324	341	20	6.136	0.009	1.000	Nd II
5143.324	267	19	6.122	0.011	1.000	Nd II
5176.765	280	21	6.132	0.012	1.000	Nd II
5182.597	290	17	6.110	0.009	1.000	Nd II
5212.346	309	19	6.121	0.009	1.000	NdII
5234.198	261	14	6.125	0.008	1.000	Nd II
5255.504	363	19	6.123	0.008	1.000	NdII
5276.861	313	17	6.112	0.008	1.000	Nd II
5356.959	332	19	6.141	0.009	1.000	NdII
5361.158	197	20	6.115	0.015	1.000	NG II
5361.469	267	14	6.123	0.008	1.000	Nd II Nd II
5385.884	272	20	0.120	0.011	1.000	
5399.084	381	42	6.162	0.016	1.000	ING II

Таблица А3.1: Продолжение

Длина волны			Период			Отождествление
Å		_	$\mathbf{D}(\mathbf{u},\mathbf{u})$	_	Dech	
A 5416.262	A 204	σ_A	P(min)	σ_P	Prob.	Ndu
5410.505 5431.514	294	20 10	0.112 6.120	0.013	1.000	Ndu
5485 692	299	19	6 130	0.010	1.000	Ndu
5533.817	255 276	25	6.126	0.014	1.000	Ndu
5618.984	244	32	6.137	0.020	1.000	Ndu
5702.247	296	21	6.117	0.011	1.000	Ndu
5734.535	345	36	6.150	0.015	1.000	Ndu
5804.004	286	17	6.132	0.009	1.000	Nd II
5811.564	255	17	6.112	0.010	1.000	Nd II
5825.838	296	17	6.137	0.009	1.000	Nd II
5842.358	240	16	6.140	0.010	1.000	Nd II
5865.018	235	21	6.129	0.014	1.000	Nd 11
6248.259	335	43	6.170	0.019	1.000	Nd 11
6341.460	266	28	6.142	0.016	1.000	Nd 11
6365.524	281	32	6.105	0.017	1.000	Nd 11
6637.170	321	36	6.120	0.017	1.000	Nd II
6637.942	357	27	6.137	0.012	1.000	Nd II
6650.499	340	27	6.108	0.012	1.000	Nd II
6680.125	235	39	6.129	0.025	0.999	Nd II
4445.010	274	16	6.127	0.009	1.000	Nd III + Co I
4473.290	292	15	6.124	0.008	1.000	Nd III
4514.140	247	15	6.129	0.009	1.000	Nd III
4627.260	236	13	6.120	0.008	1.000	Nd III
4651.618	308	14	6.126	0.007	1.000	Nd III
4654.312	304	15	6.125	0.008	1.000	Nd III
4689.053	308	16	6.127	0.008	1.000	Nd III
4711.331	314	15	6.120	0.007	1.000	NdIII
4759.536	227	12	6.134	0.008	1.000	Nd III
4769.622	330	35	6.183	0.016	1.000	NdIII
4788.459	312	17	6.133	0.008	1.000	NdIII
4796.499	277	14	6.128	0.008	1.000	NdIII
4821.990	287	19	6.128	0.010	1.000	NdIII
4911.651	298	14	6.128	0.007	1.000	Nd III Nd an
4912.941	330	10	0.132	0.008	1.000	
4914.090	299	10	6 122	0.008	1.000	Ndu
4921.400	234	14	6 1 3 0	0.007	1.000	Ndu
4942.038 5050.603	211	14	6 120	0.008	1.000	Ndu
5084 656	241	18	6 1 2 6	0.008	1.000	Ndu
5084.050	240	17	6 128	0.012	1.000	Ndu
5127047	229	12	6 124	0.003	1.000	Nd III
5151 746	240	13	6.124 6.127	0.008	1.000	Ndiii
5193.031	227	11	6.121	0.008	1.000	Nduu
5203.923	217	11	6.131	0.008	1.000	Nd III
5286.724	322	16	6.125	0.008	1.000	NdIII
5294.109	254	13	6.126	0.008	1.000	Nd III
5410.094	278	15	6.117	0.008	1.000	Nd III
5429.756	161	10	6.139	0.010	1.000	Nd III + Fe I
5566.012	272	17	6.123	0.009	1.000	Nd III
5633.549	315	19	6.119	0.009	1.000	Nd III
5677.174	340	23	6.135	0.010	1.000	Nd III
5802.532	327	18	6.137	0.009	1.000	Nd III
5845.017	277	15	6.126	0.008	1.000	Nd III
5851.529	274	14	6.122	0.008	1.000	Nd III
5987.677	317	18	6.138	0.009	1.000	Nd III
6145.062	271	14	6.132	0.008	1.000	Nd III
6327.265	266	14	6.118	0.008	1.000	Nd III
6526.638	88	8	6.110	0.015	1.000	Nd III
6550.228	325	20	6.132	0.009	1.000	NdIII
6690.821	327	24	6.133	0.011	1.000	Nd III
Sm						

Таблица АЗ.1: Продолжение

Длина волны			Периол			Отожлествление
дзина возния			порнод			o romgeerbalenne
Å	A	σ_A	P(min)	σ_P	Prob.	
UVES1						
3414.471	198	10	6.111	0.009	1.000	Sm III
3444.543	211	15	6.110	0.012	1.000	Sm III
HARPS	220	20	6 197	0.000	1 000	Cross 77
4499.404	305	20 26	0.127 6.151	0.009	1.000	Sm II
4505.029	387	20 23	6 130	0.013	1.000	Sm u
4523.902	338	19	6.129	0.009	1.000	Smu
4542.037	359	73	6.063	0.029	0.994	Smu
4566.196	330	17	6.135	0.008	1.000	Sm II
4577.688	337	17	6.138	0.008	1.000	Sm 11
4674.579	290	14	6.129	0.008	1.000	Sm 11
4676.904	329	17	6.136	0.008	1.000	Sm 11
4693.624	233	25	6.099	0.016	1.000	Sm II
4781.815	191	30	6.146	0.023	1.000	Sm II
4791.560	293	31	6.141	0.016	1.000	Sm II
4952.362	267	23	6.131	0.013	1.000	Sm II
5052.740	224	15	6.126	0.011	1.000	Sm 11
5103.079	280	19	6.118	0.010	1.000	Sm II
6426.573	206	43	6.089	0.031	0.989	Sm II
6589.695	507	76	6.105	0.022	1.000	Sm II
Eu						
HARPS						
6049.502	93	22	6.127	0.036	0.891	Eun
6173.050	136	21	6.088	0.023	1.000	EuII
6437.636	149	14	6.093	0.015	1.000	Eun
6645.102	175	15	6.161	0.013	1.000	EuII
Gd						
UVESI 2419 714	0.00	20	C 194	0.019	1 000	C1-
3418.714	208	20	0.134 6.138	0.013	1.000	Gall
3431.223 2472 216	200	20	0.120 6.122	0.018	1.000	Gdu
3473.210	186	14	6.135	0.012	1.000	Gdu
3512 100	138	12	6 144	0.011	1.000	Gdu
3528.508	188	18	6.141	0.013	1.000	Gdu
3622.791	320	30	6.111	0.013	1.000	Gdu
HARPS						
4498.285	193	21	6.083	0.016	1.000	Gd 11
4732.597	240	23	6.160	0.015	1.000	Gd 11
5092.228	270	29	6.138	0.016	1.000	Gd 11
5186.893	140	31	6.146	0.034	0.983	Gd II
5560.666	291	54	6.188	0.028	0.999	Gd 11
Th						
HARPS						
5505 391	427	26	6 140	0.009	1 000	ТЪщ
5847.213	416	34	6.152	0.013	1.000	Тыш
6092.916	258	23	6.133	0.013	1.000	Тын
6323.570	340	24^{-5}	6.163	0.011	1.000	Тып
6511.043	261	34	6.125	0.019	1.000	Тып
6537.786	275	51	6.134	0.028	0.999	Тып
6687.701	342	59	6.125	0.026	0.999	Тып
D						
Dy UVES1						
3407 780	213	12	6.103	0.010	1.000	Dv II
3429.413	356	20	6.103	0.010	1.000	Dy II
3434.349	289	16	6.136	0.009	1.000	Dy II
3534.927	222	12	6.118	0.009	1.000	Dy II
3538.492	284	14	6.120	0.009	1.000	Dy II

Таблица АЗ.1: Продолжение

Длина волны			Период			Отождествление
Å		_	$\mathbf{D}(\mathbf{u},\mathbf{u})$	_	Dech	
A 2550 100	A 210	0 _A	$\frac{P(min)}{C_{100}}$	σ_P	1 000	Deer
3550.198	312	10	0.120 6.194	0.009	1.000	Dyll
2002.121	307	10	0.124	0.010	1.000	Dyll
3002.797	144	33	0.302	0.042	0.976	Dyll
3019.127	224	11	0.124	0.009	1.000	DyIII
3919.415 HARPS	287	13	6.129	0.008	1.000	Dy III
1/168 127	208	23	6 135	0.012	1 000	Dvu
4408.127	230	20	6 1 3 2	0.012	1.000	Dyn
4505.252	240	20	6 110	0.017	1.000	Dyn
45751.842	200	29 22	6 127	0.010	1.000	Dyn
4731.043	310	22	6.179	0.011	1.000	Dyn
4923.102	267	21	6 121	0.014	1.000	Dy II Du u
4409.000	307	20	6 125	0.008	1.000	Dy III
4502.905	205	19	0.155	0.011	1.000	Dym
4372.891	323	10	0.120	0.009	1.000	Dylli
0730.329 CCFF 4C2	354	20	6.119	0.011	1.000	
0055.405	269	55	0.205	0.028	0.999	Dy III 0055.575+ C1 0055.517
Но						
UVES1						
3398.913	181	13	6.097	0.013	1.000	Ноп
3416.431	283	22	6.114	0.013	1.000	Ноп
3456.007	354	21	6.116	0.010	1.000	Ноц
3581.420	291	23	6.116	0.013	1.000	Нош
0001.120	201	20	0.110	0.010	1.000	nom
Er						
UVES1						
3307.460	122	28	6.068	0.038	0.960	Er 11
3486.795	146	13	6.119	0.016	1.000	Er 11
3559.885	253	18	6.132	0.013	1.000	Er 11
3633.527	224	19	6.137	0.015	1.000	Er 11
HARPS						
4630.867	209	18	6.126	0.013	1.000	ErII
4675.634	187	14	6.117	0.012	1.000	Er 11
5028.892	218	37	6.024	0.024	0.999	Eru
6015.724	88	20	6.055	0.038	0.938	Eru
4421.962	102	5	6.137	0.008	1.000	Er III bl.
4735.548	351	23	6.136	0.010	1.000	ErIII
		-				
Tm						
UVES1						
3462.182	230	14	6.121	0.011	1.000	Tm II
Lu						
HARPS						
4785.408	83	30	2.928	0.012	0.105	Lun
4994.141	35	12	4.860	0.033	0.133	LuII
6199.640	80	30	7.996	0.095	0.037	Lun
6221.844	93	29	6.212	0.047	0.496	Lun
(T)						
HARPS	0.0	20	4 1 4 5	0.004	0.007	(T)
0370.120	80	30	4.145	0.024	0.097	
6599.473	111	47	4.432	0.034	0.002	1 n 111
Неклассифици	ровани	ые и/и	или неолож	дествлеч	ные лич	ии
UVES1				,,		
3469.888	140	23	6.116	0.027	0.999	
3538.886	163	10	6.125	0.011	1,000	
3555.348	237	16	6.102	0.011	1.000	Nd 111 3555.356
3638.758	170	14	6.095	0.014	1,000	
4211.014	173	15	6.105	0.011	1.000	Nd 111 4211.003
HARPS						

Таблица АЗ.1: Продолжение

Длина волны			Период			Отождествление
Å	4		$\mathbf{D}(\mathbf{u},\mathbf{u})$		Deck	
A 4406 128	280	σ_A	P(min)	σ_P	Prob.	Nd 11 4406 146
4400.138 4499.179	209 110	10	6.111	0.010 0.020	1.000	Na III 4400.140
4507.522	275	15	6.131	0.008	1.000	Nd 111 4507.522
4532.095	285	15	6.126	0.008	1.000	
4534.935	223	10	6.123	0.007	1.000	Nd 111 4534.941
4544.236	215	14	6.105	0.010	1.000	
4546.628	257	16	6.115	0.009	1.000	
4570.637	363	18	6.128	0.008	1.000	Nd 111 4570.660
4584.509	341	25	6.129	0.011	1.000	Nd 111 4584.512, Dy 111 4584.51
4603.791	257	15	6.133	0.009	1.000	
4604.590	124	10	6.123	0.012	1.000	Nd 111 4604.606
4621.174	356	28	6.151	0.012	1.000	Dy 111 4621.175
4631.875	250	20	6.131	0.012	1.000	N 1 4640.079
4642.979	242	10	6.126 6.142	0.010	1.000	Nd III 4642.973
4050.210	213	20 15	0.143 6.125	0.014	1.000	Nd uu 4654 014
4034.039	105	10	6 114	0.008	1.000	Nu III 4034.014
4685 816	344	38	6.137	0.013 0.017	1.000	
4688.177	83	24	6.178	0.045	0.628	Nd 111 4688 134
4688.632	104	20	6.195	0.030	0.996	Nd III $4688.690 + \text{Tb}$ II
4693.286	219	11	6.129	0.008	1.000	
4713.531	269	14	6.136	0.008	1.000	Nd 111 4713.495
4720.752	229	16	6.150	0.011	1.000	Nd 111 4720.740
4722.845	282	18	6.136	0.010	1.000	Nd 111 4722.846
4723.710	253	41	6.071	0.023	0.999	
4734.757	237	25	6.144	0.016	1.000	Nd 111 4734.731
4746.003	244	12	6.125	0.008	1.000	Nd 111 4745.983
4748.168	29	9	6.566	0.054	0.375	
4769.314	330	35	6.183	0.016	1.000	
4770.899	150	8	6.124	0.008	1.000	Nd III 4770.884
4787.429	184	43	6.095	0.034	0.967	N.1. 4704.004
4794.247	329	19	6.117 6.125	0.009	1.000	Nd III 4794.224 Nd III 4700 887
4799.910	201	20	6.002	0.008	1.000	Nd III 4799.887 Nd III 4804 710
4810 374	240	18	6 1 2 8	0.012	1.000	Nd 111 4810 369
4821.110	287	19	6.128	0.010	1.000	Nd III 4821.112
4853.382	406	43	6.134	0.016	1.000	
4866.715	344	30	6.136	0.013	1.000	
4904.666	195	15	6.118	0.012	1.000	
4951.944	220	12	6.134	0.008	1.000	Nd 111 4951.948
4956.202	181	13	6.143	0.011	1.000	
4972.842	153	12	6.105	0.012	1.000	
4976.801	282	20	6.094	0.011	1.000	
5012.933	324	16	6.127	0.008	1.000	
5064.040	282	18	6.118	0.010	1.000	
5078.332	212	22	6.109 C 105	0.015	1.000	N.1 5002.000
5083.846	291	21	6.105 6.124	0.011	1.000	Nd III 5083.860
5106 600	294	20 18	$0.134 \\ 6.122$	0.012	1.000	
5140 498	230	27	6 127	0.003	1.000	
5190.311	202	23	6.133	0.014 0.017	1.000	
5213.243	363	32	6.168	0.013	1.000	
5213.727	280	37	6.145	0.020	1.000	
5277.200	222	17	6.106	0.012	1.000	
5342.398	229	21	6.107	0.014	1.000	
5368.583	238	26	6.181	0.017	1.000	Nd 111 5368.581
5373.005	398	35	6.108	0.013	1.000	Dy 111 5373.0
5397.851	309	23	6.116	0.011	1.000	
5432.638	202	14	6.143	0.011	1.000	
5441.654	281	25	6.154	0.014	1.000	Nd 111 5441.630
5467.324	300	30	6.114	0.015	1.000	D 5451 4
5471.402	377	26	6.126	0.011	1.000	Dy 111 5471.4

Таблица АЗ.1: Продолжение

Длина волны Период Отождествление	
Å $A \sigma_A P(min) \sigma_P$ Prob.	
5502.872 275 16 6.137 0.009 1.000	
5521.469 170 16 6.125 0.014 1.000	
5527.936 217 43 6.127 0.030 0.997	
5530.826 238 16 6.129 0.010 1.000 Nd III 5530.860	
5533.381 281 32 6.108 0.017 1.000	
5536.510 341 27 6.130 0.012 1.000	
5555.726 194 46 6.231 0.037 0.955	
5556.114 395 44 6.105 0.016 1.000 Dy III 5556.12	
$5604.916 \qquad 253 \qquad 34 \qquad 6.145 \qquad 0.025 \qquad 1.000 \qquad + \ {\rm Ca}_{\rm I} \ 5604.939$	
5617.674 242 38 6.131 0.023 1.000	
5623.569 335 45 6.101 0.020 1.000	
5654.979 174 10 6.123 0.009 1.000 Nd III 5654.965	
5673.185 302 37 6.117 0.018 1.000	
5680.682 339 39 6.136 0.017 1.000	
5705.229 263 20 6.133 0.011 1.000 Nd III 5705.238	
5713.777 194 36 6.173 0.028 0.999	
5714.329 265 35 6.104 0.019 1.000 Nd III 5714.366	
5796.994 287 28 6.121 0.015 1.000	
5852.421 253 14 6.142 0.009 1.000	
5920.707 306 25 6.140 0.012 1.000	
5926.403 253 25 6.103 0.015 1.000	
5960.612 277 23 6.131 0.013 1.000	
5993.170 266 46 6.135 0.026 0.999	
5998.263 257 31 6.137 0.018 1.000	
6012.286 340 21 6.116 0.009 1.000	
6014.550 327 20 6.123 0.009 1.000	
6023.314 174 40 6.137 0.034 0.974	
6038.492 278 26 6.103 0.014 1.000	
6044.651 264 24 6.110 0.014 1.000	
6093 852 295 21 6 116 0 011 1 000	
6105.792 272 28 6.117 0.016 1.000	
6148852 220 17 6139 0.012 1.000	
6172.552 217 25 6.133 0.018 1.000	
6193 598 190 38 6 197 0 031 0 995	
6201 765 260 43 6 097 0 024 0 999	
6206.097 214 39 6.031 0.026 0.999	
6251 136 321 28 6 140 0 013 1 000	
6254.676 231 19 6.134 0.012 1.000	
6273 707 271 23 6 121 0 013 1 000 Nd 11 6273 673	
6286.050 172 48 6.025 0.040 0.718	
6328 438 152 25 6 131 0 025 0 900	
$6351\ 010$ 154 17 $6\ 070$ 0.017 0.743	
$6417\ 128$ 242 14 $6\ 118$ $0\ 009$ $1\ 000$	
6434 946 221 41 6 104 0 028 0 008	
6524464 353 27 6127 0.012 1.000	
6570551 - 273 - 47 - 6.121 - 0.026 - 0.000	
6667.494 226 62 6.097 0.040 0.714	

Таблица АЗ.1: Продолжение