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Abstract—We analyze the space velocities of blue supergiants, long-period Cepheids, and young open star
clusters (OSCs), as well as the H I and H II radial-velocity fields by the maximum-likelihood method. The
distance scales of the objects are matched both by comparing the first derivatives of the angular velocity Ω′
determined separately from radial velocities and proper motions and by the statistical-parallax method. The
former method yields a short distance scale (for R0 = 7.5 kpc, the assumed distances should be increased
by 4%), whereas the latter method yields a long distance scale (for R0 = 8.5 kpc, the assumed distances
should be increased by 16%).We cannot choose between these twomethods. Similarly, the distance scale of
blue supergiants should be shortened by 9% and lengthened by 3%, respectively. The H II distance scale is
matched with the distance scale of Cepheids and OSCs by comparing the derivativesΩ′ determined for H II
from radial velocities and for Cepheids and OSCs from space velocities. As a result, the distances to H II
regions should be increased by 5% in the short distance scale. We constructed the Galactic rotation curve
in the Galactocentric distance range 2–14 kpc from the radial velocities of all objects with allowance for the
difference between the residual-velocity distributions. The axial ratio of the Cepheid+OSC velocity ellipsoid
is well described by the Lindblad relation, while σu ≈ σν for gas. The following rotation-curve parameters
were obtained: Ω0 = (27.5± 1.4) km s−1 kpc−1 and A = (17.1± 0.5) km s−1 kpc−1 for the short distance
scale (R0 = 7.5 kpc); and Ω0 = (26.6± 1.4) km s−1 kpc−1 and A = (15.4± 0.5) km s−1 kpc−1 for the
long distance scale (R0 = 8.5 kpc). We propose a newmethod for determining the angular velocityΩ0 from
stellar radial velocities alone by using the Lindblad relation. Good agreement between the inferred Ω0 and
our calculations based on space velocities suggests that the Lindblad relation holds throughout the entire
sample volume. Our analysis of the heliocentric velocities for samples of young objects reveals noticeable
streaming motions (with a velocity lag of ∼7 km s−1 relative to the LSR), whereas a direct computation
of the perturbation amplitudes in terms of the linear density-wave theory yields a small amplitude for the
tangential perturbations. c© 2002 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

The study of the kinematics of Galactic subsys-
tems remains one of the most important fields of
Galactic astronomy. The parameters of the Galactic
rotation curve were determined repeatedly from HI
and HII data (Clemens 1985; Fich et al. 1989;
Merrifield 1992; Brandt and Blitz 1993; Nikiforov and
Petrovskaya 1994; Honma and Sofue 1997; Nikiforov
1999) and stellar radial velocities (Karimova and
Pavlovskaya 1973; Pont et al. 1994; Dambis et al.
1995; Glushkova et al. 1998). High-precision proper
motions and trigonometric parallaxes that became
available with the release of the HIPPARCOS cat-
alog (The HIPARCOS and TYCHO catalogs, ESA
SP-1200, 1997) stimulated further works aimed at
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refining the angular velocity Ω0 and the form of the
rotation curve in the local solar neighborhood (Feast
et al. 1998; Rastorguev et al. 1999; Dambis et al.
2001). It should be pointed out that the reliability
of the resulting rotation curves depends first and
foremost on the correctness of the adopted distance
scale of objects under study. Objects with known
distances—classical Cepheids, open star clusters
(OSC), and OB-associations—allow the rotation
curve to be determined only out to heliocentric dis-
tances of 4–5 kpc, whereas H I and H II kinematic
data allow constructing the rotation curve over a
considerably wider interval of Galactocentric dis-
tances. The main problem is that the distances of
giant molecular clouds (GMC) and, consequently,
those of H II-regions, are determined from their single
hot exciting stars whose distance scale is prone not
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only to random but also to systematic errors. In this
paper we matched for the first time the distance scale
of GMC to the most accurately determined (in the
random and systematical sense) distances, i.e., those
of long-period classical Cepheids and OSC, and
inferred the kinematic parameters using an algorithm
that allows for initial-data errors, for the ellipsoidal
distribution of residual velocities, and for the errors
of systemic radial velocities that result from the
propagation of distance errors (Rastorguev 2001).
Our second task was to compute the parameters of

the spiral pattern of the Galaxy. Selection effects, i.e.,
the incompleteness of the sample due to interstellar
extinction, makes it very difficult to localize spiral
waves by analyzing only the space distribution of
young objects. The use of kinematic data appears to
be a more promising approach, because it is insensi-
tive to selection effects (Mishurov et al. 1979). Thus
Mishurov et al. (1997) determined, by analyzing the
radial velocities of classical Cepheids exclusively, the
principal parameters of the spiral pattern including
the velocity-field perturbation amplitudes and con-
cluded that the Sun is located near the corotation
circle. The perturbations due to the spiral density
wave are comparable in magnitude to the velocity
dispersion of young subsystems. Therefore, only after
the release of the HIPPARCOS and TYCHO-2 cata-
logs making high-precision proper motions available
did it become possible to analyze the space velocity
field of young objects. Torra et al. (2000) used the
radial velocities of OB-stars and Cepheids and HIP-
PARCOS proper motions of these objects to infer a
pattern speed ofΩP ≈ (31± 4) km s−1 kpc−1. Lepine
et al. (2001) also concluded that the Sun is near
the corotation circle by assuming a superposition of
a two- and four-armed pattern. At the same time,
Rastorguev et al. (2001) concluded that the Sun is
inside the corotation circle by analyzing long-period
Cepheids and young OSC, and Mel’nik et al. (2001)
came to the same conclusion based on their study
of the pattern of systematical noncircular motions of
OB-associations. Here we explore this issue further.

OBSERVATIONAL DATA

We used young OSC and long-period Cepheids
as a reference sample for matching the distance
scales of various objects. Our reference sample in-
cluded 89 young OSC with log T < 7.6 and helio-
centric distances determined by Dambis (1999) by
fitting Kholopov’s (1980) ZAMS with an allowance
for evolutionary deviations based on Geneva-group
isochrones (Maeder and Meynet 1991). The radial
velocities of cluster members were determined by
Glushkova based on published data and can be found
in the paper by Rastorguev et al. (1999). The proper

motions of clusters were computed from those of their
member stars found in the HIPPARCOS catalog
(Baumgardt et al. 2000).

Our reference sample included 113 classical
Cepheids with periods P > 9d (or ages log T < 7.6
as implied by the period-age relation of Efremov
(1989)) and heliocentric distances computed using
the fundamental-mode period-luminosity relation of
Berdnikov et al. (1996):

〈MK〉I = −5.46m − 3.52m log P

in accordance with the procedure described therein.
An earlier statistical-parallax analysis (Rastorguev
et al. 1999) showed that the sample of Cepheids
with shorter periods is not homogeneous in terms of
pulsation mode and may be contaminated by first-
overtone pulsators. We used published Cepheid radial
velocities and HIPPARCOS proper motions. Young
OSC and long-period Cepheids make up a kinemat-
ically homogeneous sample consisting of 176 and
142 objects with radial velocities and proper motions,
respectively, including 124 objects with space veloci-
ties.

We performed a separate analysis of a blue-
supergiant sample consisting of 102 stars with he-
liocentric distances tied to the OSC distance scale
(Dambis 1990). The kinematic data for these stars
were compiled by A.K. Dambis with the proper
motions adopted from the HIPPARCOS catalog,
and radial velocities, from the catalogs of Barbier-
Brossat and Figon (2000) and Wilson–Evans–
Batten (WEB) (Duflot et al. 1995).

Brandt and Blitz (1993) published the distances
and radial velocities for a total of 206 H II-regions.
We selected 203 of these objects with spectroscopic
or photometric distances inferred from their exciting
stars. The radial velocities of H II-regions were de-
termined from the CO (2.2.-mm) radio lines of their
associated molecular clouds.We did not include three
H II-regions in the final list because of their large
residual velocities relative to the provisional rotation-
curve solution. The catalog mentioned above also
gives standard errors of individual distance and radial
velocities.

We adopted 150 tangent-point radial velocities of
H I clouds from Fich et al. (1989). Note that pub-
lished H I and H II radial velocities are traditionally
corrected for the solar motion relative to the standard
apex assumed to coincide with the local standard of
rest (LSR), and we therefore first converted them into
heliocentric radial velocities.
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METHOD OF ANALYSIS

We used the techniques of maximum-likelihood
and statistical parallax (including its simplified ver-
sion) to compute the kinematic parameters and refine
the distance scales involved. See Murray (1986) for
a description of the principal ideas of the statistical-
parallax method used in this paper. The tangential
velocity of a star is computed from its proper motion
and distance and therefore depends on the adopted
distance scale, whereas radial velocities are distance
independent. The essence of the method is to rec-
oncile the fields of radial and tangential velocities in
terms of somemodel of the field of systematic motions
and ellipsoidal distribution of residual velocities. A
number of authors applied this method with success.
Hawley et al. (1986); Popovski and Gould (1998),
Gould and Popowski (1998), Fernley et al. (1998),
Popowski (1998), Fernley et al. (1998), Tsujimoto
et al. (1998), and Dambis and Rastorguev (2001)
used it to refine the distance scale of RR Lyrae type
variables. In our previous paper (Rastorguev et al.
1999) we applied this method for the first time, albeit
in a somewhat simplified form ignoring the scatter
of absolute magnitudes, to analyze the space velocity
field of young objects of the Galactic disk, which are
characterized by small residual velocity dispersions.

In this paper we also apply a simplified version of
the statistical-parallax technique (as used, e.g., by
Feast et al. 1998), based on reconciling the kinematic
parameters inferred separately from radial velocities
and propermotions. Thus, it is well known thatOort’s
constant A inferred from proper motions is much less
sensitive to the adopted distance scale than is the
value of the same constant inferred from radial veloc-
ities. This allows not only the kinematic parameters
to be determined but also the distance scale of objects
under study to be refined.
Consider now a model of the field of space veloci-

ties that includes both differential rotation and effects
due to a spiral density wave. The residual velocity of a
star can be written in the form of the following column
vector:

∆V = Vobs −Vsys = Vobs −Vsun −Vrot −Vspir,

where Vobs is the observed space velocity; Vsys, the
total velocity of systematic motions including: Vsun,
the mean heliocentric velocity of the sample studied;
Vrot, the contribution of Galactic differential rotation;
and Vspir, the perturbation due to the spiral density
wave. To allow for spiral-pattern effects, we used a
very simple kinematic model based on linear density-
wave theory by Lin et al. (1969) with the perturbation
of potential in the form of a running wave:

ΦS = AΦ cosχ,

where AΦ < 0 is the amplitude of perturbations and
χ = m(−θ + cot i ln(R/R0)) + χ0,

the phase angle of the object in the wave (it increases
toward the Galactic center). Herem is the number of
arms; θ, the position angle of the object (measured in
the direction of rotation); i, the pitch angle of spiral
arms (i < 0 for trailing spirals); χ0, the phase angle of
the Sun; and R and R0, the Galactocentric distances
of the Sun and the object, respectively. The radial
VR (which in the arm is directed toward the Galactic
center) and azimuthal Vθ (directed along differential
rotation at the outer edge of the arm) components of
velocity perturbation can be written in the following
form:

VR = fR cosχ, Vθ = fθ sinχ,

where fR and fθ are the amplitudes of velocity pertur-
bations (Rohlfs 1977):

fR =
kAΦ

κ

ν

1− ν2
F (1)
ν (x),

fθ = −kAΦ

2Ω
1

1− ν2
F (2)
ν (x).

We now use standard designations:

k =
m cot i
R

, κ = 2Ω

√
1− A

Ω
,

x =
(
kσu
κ

)2

, ν =
m(ΩP −Ω)

κ
.

Here, k is the radial wavenumber; κ, the epicyclic

frequency; A, Oort’s constant; F (1)
ν (x) and F (2)

ν (x),
the reduction factors; x, the Toomre instability pa-
rameter; σu, the dispersion of radial velocities; ν, the
relative frequency with which the object rotating in
a circular orbit meets a passing spiral wave; Ω, the
angular velocity of differential Galactic rotation; and
ΩP , the angular velocity of the rigid rotation of the
spiral pattern (i.e., the pattern speed).
Residual space velocities are usually assumed to

have a three- dimensional normal distribution:

f (∆V) = (2π)−3/2 |Lobs|−1/2

× exp
{
−0.5∆VT × L−1

obs ×∆V
}
,

where Lobs is the matrix of covariances. The covari-
ance matrix in our previous paper (Rastorguev et al.
1999) included only the ellipsoidal velocity distribu-
tion and the errors of radial velocities and proper mo-
tions, which is quite a justiable approach in the case
of small errors in the adopted distances. The latter are
related to the dispersion of absolute magnitudes as
follows:

σ2
M = 4.71〈(δr/r)2〉.
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Here, angular braces mean averaging over the dis-
tribution of distance errors. The covariance matrix
can be easily shown (Rastorguev 2001) to have the
following form:

Lobs = Lloc,e + Lerr + 0.21σ2
M r

2
t (P × L1 × P ′)

− 0.21σ2
Mprt(M × L2 × P ′)

+ 0.21σ2
Mp

2(M × L3 ×M ′),
where matrices L1, L2, L3,M , and P are equal to

L1 =
dVsys

drt
×
dVT

sys

drt
, L2 = 2Vsys ×

dVT
sys

drt
,

L3 = GS × LS,0 ×GTS + Vsys ×VT
sys,

M =




0 0 0

0 1 0

0 0 1


 , P =




1 0 0

0 p 0

0 0 p


 ,

respectively, and the formulas for matrices GS , Lloc,e,
Lerr, andLS,0 can be found in the paper by Rastorguev
et al. (1999). Here p is the distance-scale factor
defined as:

p = r0/rt,

where r0 and rt are the adopted (usually photometric)
and true distance, respectively.
We inferred the unknown parameters including the

scale factor p using the maximum-likelihoodmethod,
i.e., by minimizing the following function with sum-
mation taken over all objects of the sample under
study:

LF = −
N∑
i=1

ln f(∆V).

When refining the distance scale by reconciling the
values of Oort’s constant A, we set p = 1. We com-
puted the parameter errors using the method pro-
posed by Hawley et al. (1986).

RESULTS AND DISCUSSION

Kinematics of the Sample of
Long-Period Cepheids and OSC

Our main task was twofold: to refine the dis-
tance scale of objects considered and to construct
the rotation curve of the corresponding subsystem.
We first applied the maximum-likelihood method to
our sample of Cepheids and OSC with heliocentric
distances r < 4 kpc and ignored spiral-pattern effects
in the velocity field. Because the eventual correlation
between the solar Galactocentric distance R0 and
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Fig. 1. Galactic rotation curves inferred with different
scale lengthsHr and assuming constant velocity disper-
sion.

the distance- scale factor prevents simultaneous de-
termination of these parameters, and because of the
uncertainty in the determination of R0, we performed
our computations twice with the two most commonly
adopted values:R0 = 7.5 and 8.5 kpc.We determined
the angular velocity of Galactic rotation Ω0 from
space velocities of Cepheids and OSC and then used
it to construct the Galactic rotation curve based on
the radial velocities of all objects considered.

How distance errors affect the results. To elu-
cidate the effect of the distance errors on the results
obtained, we repeated our computations with three
different standard errors of absolute-magnitude cal-
ibration: 0m. 1, 0m. 15, and 0m. 2 for Cepheids and OSC.
We set R0 = 7.5 kpc and p = 1 in all three cases.
The results are listed in Table 1. The columns of this
table give the standard error of the absolute magni-
tude; heliocentric velocity components of the sample;
velocity-ellipsoid axes; and rotation-curve parame-
ters. The inferred kinematic parameters can be seen
to be virtually independent of the adopted σM , and
therefore in the following computations we used a
compromise value of σM = 0m. 15, which agrees with
the scatter of the period-luminosity relation for the
Cepheids members of open clusters (Berdnikov et al.
1996).

The effect of the variation of velocity dis-
persion with galactocentric distance. The study
of the kinematics and space distribution of objects
in the disks of other galaxies showed that the disk
surface brightness and velocity dispersion decrease
exponentially with galactocentric distance, and the
squared velocity dispersion is proportional to the
surface density (van den Kruit and Freeman 1986;
Bottema 1993). The corresponding scale length for
our Galaxy can be estimated only indirectly and is
most likely confined between 2 and 6 kpc depending
on the age of the subsystem studied (Lewis and Free-
man 1989; Kent et al. 1991; Malhotra 1995; Dehnen
and Binney 1998; Freudenreich 1998; Drimmel and
Spergel 2001). Let us assume that radial velocity
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Table 1. Kinematic parameters of the Cepheid + OSC sample inferred adopting different standard errors of absolute
magnitudes

σM
u0 ν0 w0 σu σν σw Ω0,

km s−1 kpc−1
Ω′,

km s−1 kpc−2
Ω′′,

km s−1 kpc−3
km s−1

0m. 10 –6.34 –12.39 –6.95 12.90 8.02 7.21 27.71 –4.66 1.18

0m. 15 –6.31 –12.33 –6.96 12.82 7.93 7.19 27.71 –4.66 1.17

0m. 20 –6.27 –12.25 –6.98 12.72 7.81 7.15 27.71 –4.65 1.15

Table 2. Kinematic parameters of the Cepheid + OSC sample inferred with different scale lengths of the assumed
exponential radial decrease of velocity dispersions

Hr,
kpc

u0, ν0, w0, σu, σν , σw , Ω0,
km s−1 kpc−1

Ω′,
km s−1 kpc−2

Ω′′,
km s−1 kpc−3

km s−1

2 –6.77 –12.45 –6.94 14.40 7.88 7.15 28.76 –4.84 1.23

4 –6.35 –12.34 –6.95 13.25 7.93 7.17 28.22 –4.74 1.18

6 –6.30 –12.32 –6.95 13.04 7.94 7.18 28.05 –4.71 1.17

Table 3. Kinematic parameters and the distance-scale factor for the Cepheid + OSC sample inferred via statistical
parallaxes

R0, kpc p
u0, ν0, w0, σu, σν , σw, Ω0,

km s−1 kpc−1
Ω′,

km s−1 kpc−2
Ω′′,

km s−1 kpc−3
km s−1

7.5 0.86 –7.24 –11.51 –8.06 13.70 8.03 8.55 26.93 –4.27 0.94

8.5 0.84 –7.21 –12.33 –8.24 13.65 8.15 8.76 26.61 –3.66 0.73

Standard errors ±0.05 ±2.10 ±1.76 ±1.61 ±1.62 ±1.18 ±1.68 ±1.35 ±0.24 ±0.19

dispersion varies exponentially with Galactocentric
radius:

σu = σ0
u exp

(
−R−R0

2Hr

)
,

Table 4. The first derivative of angular velocity inferred
separately from radial velocities Vr and proper motions µ
of the Cepheid + OSC sample and the resulting distance-
scale factor

Method R0, kpc
Ω′(Vr),

km s−1 kpc−2
Ω′(µ),

km s−1 kpc−2 p

1 7.5 –4.67 –4.53 0.97

2 7.5 –4.68 –4.42 0.94

1 8.5 –4.04 –3.97 0.98

2 8.5 –4.06 –3.88 0.96

Standard errors ±0.26 ±0.34 ±0.09

where σ0
u is the radial velocity dispersion in the solar

neighborhood and Hr, the disk scale length param-
eter. As is evident from our Table 1 (see also re-
sults of Rastorguev et al. (1999) and Dehnen and
Binney (1998)), in the neighborhood of the Sun the
components of the velocity dispersion tensors of both
the classical Cepheids + OSC and local MS-star
sample obey the following Lindblad relation to a good
accuracy:

σν = σu
κ

2Ω
.

It is possible, assuming that this relation is obeyed
at every point of the disk for the current values of
angular rotation velocity and epicyclic frequency, to
determine how the inferred kinematic parameters de-
pend on the adopted disk scale length. In this anal-
ysis we can neglect the effect of the variation of the
vertical velocity dispersion σw with Galactocentric
distance, because, first, it is insignificant compared
to the errors of tangential velocities Vb, and, second,
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the allowance for the dependence of vertical velocity
dispersion onGalactocentric distance has virtually no
effect on the results obtained. Table 2 presents the
kinematic parameters computed with R0 = 7.5 kpc,
and p = 1. The tabulated velocity-ellipsoid axes refer
to the solar neighborhood. Note thatΩ0 is sensitive to
the adopted scale length parameter.

Figure 1 shows how the inferred rotation curve
changes with the adopted scale length. Although the
exact scale for our sample is unknown, an analysis
of the results of Kent et al. (1991) leads us to con-
clude that young subsystems are characterized by a
relatively shallower decrease of radial dispersion with
Galactocentric distance. According to our results, the
rotation curve forHr = 2 kpc is 9 km s−1 higher than
if computed for constant velocity dispersion. Dehnen
and Binney (1998) inferred a scale length of ∼2–
2.5 kpc for old main-sequence stars; Drimmel and
Spergel (2001) found a scale length of 0.28R0 by an-
alyzing COBE/DIRBE data (note that both old and
young stars contribute to infrared radiation). Since no
accurate data are available about the relation between
surface brightness and velocity dispersion, hereafter
we assume that velocity dispersion remains constant
along Galactocentric radius.

Refining the distance scale. Table 3 lists the
kinematic parameters inferred treating the distance-
scale factor as an unknown parameter. The initial
distances to Cepheids and OSC are on the short dis-
tance scale. As is evident from the table, the distance-
scale factor depends only slightly on the adopted R0.
Judging by these results, the adopted distance scale
should be increased by 14–16%.

Besides the rigorous method of statistical paral-
laxes, we also used its simplified version, which in-
volves comparing the values of the first derivative of
angular velocity Ω′ inferred separately from radial ve-
locities with proper motions.We determined the kine-
matic and rotation-curve parameters of the sample
under study from independent maximum-likelihood
solutions based on radial velocities and proper mo-
tions. It can be easily seen that radial velocities of
stars of flat subsystems allow neither w0 nor σw to
be accurately constrained. We therefore inferred Ω′ in
two ways: (1) by computing the heliocentric space
velocity components u0, ν0, w0 and vertical velocity
dispersion σw of the sample under study from space
velocities, and then fixing these values in separate ra-
dial velocity and proper-motion solutions; and (2) by
substituting u0 and ν0 inferred from radial velocities
into the proper-motion solution and substituting w0

and σw inferred from proper motions into the radial
velocity solution. Table 4 lists the resulting Ω′ and
distance-scale factors p = Ω′(µ)/Ω′(Vr).

The resulting mean distance-scale factor for the
Cepheid+OSC subsystem is equal to p = 0.96 for
R0 = 7.5 kpc (with Ω′ = −4.50 km s−1 kpc−2) and
p = 0.97 for R0 = 8.5 kpc (with Ω′ =
−3.95 km s−1 kpc−2). Again, we note a weak de-
pendence of the distance-scale factor on the adopted
solar Galactocentric distance (see Table 5).
Noteworthy are (see Tables 3 and 5) systematic

differences between the distance-scale factors given
by the statistical-parallax technique (∼0.86) and
by its simplified modification (∼0.96). We analyzed
the problem for possible biases using numerical
simulations. To this end, we used the real coordinates
and initial distances to the objects of our sample
and simulated their “true” space velocities based
on the earlier determined values of kinematic and
rotation-curve parameters. We then added normally
distributed errors to the “true” distances and space
velocities and redetermined the kinematic parameters
and distance-scale factor using both the rigorous
statistical-parallax technique (space velocities) and
its simplified modification. We set velocity errors
based on the typical errors of observational data
and ellipsoidal distribution of residual velocities.
One hundred numerical simulations yielded a mean
distance-scale factor of p = 1.00 ± 0.05 and p =
1.01 ± 0.07 by making inferences from space veloc-
ities or by comparing the first derivatives of angular
velocity, respectively. The possible distance-scale
factors were confined to the (0.85–1.15) interval,
with, on the average, correlated deviations of the
two values from unity. We cannot unambiguously
choose between the two approaches to the distance-
scale refinement. Since it is logical to associate the
short and long distance scales with R0 = 7.5 kpc
and R0 = 8.5 kpc, respectively, hereafter we in-
ferred the kinematic parameters assuming that the
Cepheid+OSC distance-scale factors of p = 0.96
and 0.84 correspond toR0 = 7.5 and 8.5 kpc, respec-
tively. In support of this conclusion, we determinedR0

from space velocities with fixed p. Our analysis yielded
R0 = (7.4± 1.0) and (8.3± 1.0) kpc for p = 0.96 and
0.84, respectively. The large errors of the resultingR0

are due to the small size of the data sample used.
Determination of Ω0 from radial velocities

using Lundblad’s relation. Note that the fact that
the velocity dispersions of Cepheids and OSC obey
the Lindblad relation allows the angular velocity of
rotation Ω0 at the solar Galactocentric distance to be
estimated independently from radial velocities exclu-
sively. When computing the kinematic parameters,
the idea is to set as unknown only the radial velocity
dispersion σ0

u at the solar Galactocentric distance and
to determine the ratio of velocity ellipsoid axes from
the Lindblad relation while setting the angular veloc-
ity and its derivative equal to their local values for each
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Table 5. Kinematic parameters of the Cepheid + OSC sample inferred from space velocities using the mean distance-
scale factors (determined by comparing the first derivatives of angular velocity)

R0, kpc
u0 ν0 w0 σu σν σw Ω0,

km s−1 kpc−1
Ω′,

km s−1 kpc−2
Ω′′,

km s−1 kpc−3
km s−1

7.5 −6.55 −12.11 −7.25 13.04 7.92 7.55 27.47 −4.54 1.09

8.5 −6.38 −12.98 −7.18 12.80 8.04 7.44 27.37 −3.99 0.90

Standard errors ±1.77 ± 1.71 ±1.24 ±1.49 ±1.10 ±1.22 ±1.39 ±0.24 ±0.19

Table 6. Kinematic parameters of the blue-supergiant sample

R0, kpc
u0 ν0 w0 σu σν σw Ω0,

km s−1 kpc−1
Ω′,

km s−1 kpc−2
Ω′′,

km s−1 kpc−3
km s−1

7.5 −6.04 −10.92 −7.12 11.49 8.96 5.13 29.60 −4.76 0.89

8.5 −6.18 −11.33 −7.86 11.63 9.41 5.71 29.14 −4.00 0.60

Standard errors ±1.93 ±1.73 ±1.08 ±1.42 ±1.14 ±1.03 ±1.62 ±0.32 ±0.53

Table 7. Kinematic and rotation-curve parameters inferred from H II data

R0, kpc
u0 ν0 σu σν Ω′,

km s−1 kpc−2
Ω′′,

km s−1 kpc−3
km s−1

7.5 −8.11 −14.88 6.70 6.91 −4.77 1.26

8.5 −7.92 −15.73 6.56 7.03 −4.08 1.01

Standard errors ±1.71 ±1.19 ±2.07 ±1.14 ±0.27 ±0.22

object. The resulting likelihood function therefore de-
pends explicitly on the unknown angular velocity Ω0.
We applied this method with fixed w0 = −7 km s−1

and σw = 7 km s−1 to the radial velocities of Cepheids
and OSC with p = 0.96 and R0 = 7.5 kpc to obtain
Ω0 = (26.5 ± 8.7) km s−1 kpc−1. The large error of
the inferred angular velocity is fully explained by the
errors of the inferred velocity dispersions, which are
equal to 1.2–1.7 km s−1 (see Table 5). The surpris-
ingly good agreement between the angular velocity
values inferred from space and radial velocities indi-
cates that the Lindblad relation is obeyed accurately
enough throughout the entire space region studied.

Kinematics of the Blue-Supergiant Sample

We applied the maximum-likelihood technique
to a sample of 102 blue supergiants. The disper-
sion of the inferred absolute magnitudes for these
stars is higher than for Cepheids and OSC and is
equal to σM ≈ 0m. 38 (Dambis 1990). We estimated
the distance-scale factor using the two methods

described above. The maximum-likelihood method
applied to space velocities of stars yielded p = 0.97 ±
0.08, whereas a comparison of the first derivatives
of angular velocity determined separately from radial
velocities and proper motions yielded p = 1.09± 0.16
(error estimated approximately). Both results agree
fairly well with the correction factor to the blue-
supergiant distance scale (p = 1.03 ± 0.04) inferred
from practically the same sample by comparing pho-
tometric and HIPPARCOS trigonometric parallaxes
(Dambis et al. 2001). As in the case of the Cepheid
and OSC sample, the distance-scale correction fac-
tors given by the two methods differ systematically by
∼0.1. Table 6 lists the final kinematic parameters for
the blue-sueprgiant sample.
Blue supergiants yielded somewhat higher angular

velocity Ω0 compared to what we inferred from the
Cepheid and OSC sample, but the difference is within
the quoted errors. The systematic difference between
the two angular velocity values is partly due to the
specifics of the space distribution of objects involved.
The most reliable estimates of angular velocity are
those inferred from objects lying in the vicinity of the
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Table 8.Galactic rotation curve V (R) for the short and long distance scales

R, kpc
V (R),
km s−1

R0 = 7.5 kpc

V (R),
km s−1

R0 = 8.5 kpc
R, kpc

V (R),
km s−1

R0 = 7.5 kpc

V (R),
km s−1

R0 = 8.5 kpc

2.0 198.1 198.2 8.2 201.6 227.5
2.1 199.9 201.3 8.3 200.7 227.0
2.3 201.3 203.8 8.4 199.8 226.4
2.4 202.4 205.9 8.6 199.0 225.8
2.6 203.3 207.6 8.7 198.3 225.2
2.7 204.0 209.0 8.9 197.6 224.6
2.8 204.6 210.3 9.0 196.9 224.0
3.0 205.2 211.4 9.1 196.3 223.3
3.1 205.7 212.3 9.3 195.8 222.7
3.3 206.2 213.2 9.4 195.4 222.1
3.4 206.7 213.9 9.6 195.1 221.5
3.5 207.2 214.7 9.7 194.8 220.9
3.7 207.8 215.4 9.8 194.6 220.4
3.8 208.3 216.2 10.0 194.5 219.9
4.0 208.9 216.9 10.1 194.5 219.4
4.1 209.5 217.6 10.3 194.6 219.0
4.2 210.1 218.4 10.4 194.8 218.7
4.4 210.6 219.1 10.5 195.0 218.5
4.5 211.2 219.9 10.7 195.4 218.3
4.7 211.7 220.7 10.8 195.8 218.2
4.8 212.2 221.5 11.0 196.3 218.1
4.9 212.6 222.3 11.1 196.9 218.2
5.1 212.9 223.1 11.2 197.6 218.3
5.2 213.2 223.8 11.4 198.4 218.5
5.4 213.4 224.6 11.5 199.2 218.9
5.5 213.5 225.3 11.7 200.2 219.3
5.6 213.5 226.0 11.8 201.2 219.8
5.8 213.4 226.6 11.9 202.4 220.4
5.9 213.3 227.2 12.1 203.6 221.1
6.1 213.0 227.7 12.2 205.0 221.9
6.2 212.7 228.2 12.4 206.4 222.8
6.3 212.2 228.6 12.5 208.0 223.7
6.5 211.7 229.0 12.6 209.8 224.8
6.6 211.1 229.2 12.8 211.6 226.0
6.8 210.5 229.4 12.9 213.7 227.2
6.9 209.7 229.5 13.1 215.9 228.5
7.0 208.9 229.6 13.2 218.3 229.9
7.2 208.1 229.6 13.3 220.9 231.4
7.3 207.2 229.5 13.5 223.7 233.0
7.5 206.3 229.3 13.6 226.7 234.6
7.6 205.4 229.0 13.8 230.0 236.3
7.7 204.4 228.8 13.9 233.6 238.0
7.9 203.5 228.4 14.0 237.4 239.8
8.0 202.5 228.0
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Fig. 2. Galactic rotation curve V (R) for the short (R0 =
7.5 kpc) and long (R0 = 8.5 kpc) distance scales.

“tangent circle” (it is the circle in the Galactic plane
with the interval connecting the Sun and the Galactic
center as its diameter), because, in the corresponding
conditional proper-motion equations, the coefficients
at the angular-velocity derivatives are close to zero
(Glushkova et al. 1999). The proper motions of 23
blue supergiants lying in the vicinity of the “tangent
circle” yielded Ω0 = (27.91 ± 2.79) km s−1 kpc−1;
i.e., the angular velocities inferred from two samples
agree well with each other. This result justifies the
subsequent use of blue supergiants for constructing
the combined rotation curve over a wide interval of
Galactocentric distances.

Kinematics of Ionized Hydrogen

The only way to match the distance scales of
H II and stars is to compare the first derivatives
of angular velocity inferred from line-of-sight and
space velocities for gas and stars, respectively. Given
that the scatter of velocities along the z-coordinate
has virtually no effect on the radial velocities of
the thin-disk objects, we fixed w0 = −7 km/s and
σw = σν . Table 7 lists the kinematic and rotation-
curve parameters inferred from H II data for r <
4 kpc. In this interval of Galactocentric distances
the first derivatives of angular velocity for gas (in-
ferred from radial velocities) and stars (inferred from
space velocities) are estimated at either –4.77 and
–4.54 km s−1 kpc−2, respectively (if R0 = 7.5 kpc)
implying the H II distance-scale correction factor p =
0.95, or –4.08 and –3.66 km s−1 kpc−2, respectively
(if R0 = 8.5 kpc) implying the H II distance-scale
correction factor p = 0.90. Note that, as expected, the
velocity ellipsoid axes inferred for gas do not obey the
Lindblad relation, but σu ≈ σν .

Constructing the Rotation Curve

The good agreement between the mean heliocen-
tric velocity components of different young-object
samples allows us to construct the rotation curve
over a sufficiently wide interval of Galactocentric
distances, 2–14 kpc, using radial velocities of both
stars and gas. Figure 2 shows the rotation curves
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Fig. 3.Galactic rotation curveV (R) for the short distance
scale (R0 = 7.5 kpc) with young-object data points su-
perimposed.

V (R) inferred from the entire sample of young objects
(OSC + Cepheids + supergiants + H I + H II)
for R0 = 7.5 and 8.5 kpc. These rotation curves
are tabulated in Table 8. Here we expanded the
difference of angular velocities into a seventh- order
Taylor series in the vicinity of R0, and computed
the velocity ellipsoid axes separately for neutral
and ionized hydrogen, blue supergiants, and for
Cepheids + OSC (see Table 9) with the distances
to all objects matched to each other. The resulting
local centroid velocity and Oort’s constant A are
equal to V (R0) = (206 ± 10) km s−1, A = (17.1 ±
0.5) km s−1 kpc−1 and V (R0) = (226 ± 12) km s−1,
A = (15.4± 0.6) km s−1 kpc−1 for the short and long
distance scale, respectively.

Figure 3 shows the rotation curve for the short
distance scale (R0 = 7.5 kpc) with the data points
for individual objects computed using the following
formula:

V = RΩ0 +
R

R0 sin l cos b
(Vr − Vsun,r),

where Vsun,r is the radial projection of the heliocentric
velocity of the sample considered. As is evident from
the figure, the scatter of V about the rotation curve
is due mainly to small sin l. Note that systematic
differences between HI velocities may be manifes-
tations of a barlike structure at the center of the
Galaxy (Freudenreich 1998). The gas-stellar disk of
the Galaxy is well known to show appreciable warp
in the direction l ≈ 90◦ at Galactocentric distances
>10 kpc. Our rotation curve therefore applies only to
the part of the Galactic disk where warp is insignifi-
cant.
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Table 9.Heliocentric velocity components and velocity-ellipsoid axes for the young-object sample

Objects
σu, σν , σ∗w, u0 ν0 w∗0

km s−1

Cepheids + OSC 13.30 7.59 7.55 −9.17 −12.98 −7.25

Standard errors ±1.79 ±0.41 – » » »

Supergiants 14.17 10.00 5.13 » » »

Standard errors ±0.51 ±2.12 – » » »

H II 6.71 7.19 5.0 » » »

Standard errors ±0.60 ±0.93 – » » »

H I 6.60 6.05 5.0 » » »

Standard errors – ±0.34 – ±0.48 ±0.78 –
∗ Parameters fixed at values inferred from the space-velocity solution.

Table 10. Parameters of the spiral pattern (R0 = 7.5 kpc)

Objects m
fR fθ i χ0

km s−1 deg

Cepheids 2 −6.66 −1.40 −6.02 −85.19

OSC 4 −5.51 −0.16 −12.18 −88.05

Standard errors ±2.34 ±1.56 ±0.72 ±14.50

ОВ-stars 2 −6.64 0.42 −6.55 −97.28

Standard errors ±2.51 ±2.31 ±0.86 ±18.30

Allowing for Spiral-Arm Effects

Our computations showed that young-object
samples lag behind the Sun on the average by
13 km s−1. Dehnen and Binney (1998) used HIP-
PARCOS proper motions and parallaxes of nearby
MS stars to find out that the Sun moves ahead of
the LSR by 5.25 km s−1. It follows from this that
young subsystems lag behind the LSR by∼8 km s−1,
whereas their velocity dispersion should imply a
velocity lag of ≤1.5 km s−1. This discrepancy may
be due, among other things, to streaming motions
induced by spiral arms.

To allow for the spiral-arm effects in the velocity
field, we performed our computations in terms of two-
and four-armedmodels of the spiral pattern (see Table
10).

The phase of the Sun with respect to the spiral
wave, which is close to −π/2, indicates that the
Sun is situated at the outer edge of the arm; Vθ ≈
1.4 km s−1 (for the Cepheid + OSC sample). We
therefore face a discrepancy between the magnitude
and direction of the tangential disturbance as inferred
from the centroid velocity lag behind the LSR (Vθ ≈

−6.5 km s−1) and the value of the same quantity com-
puted directly in terms of a model of spiral-pattern
effects in the velocity field. The discrepancy is beyond
the quoted errors. The velocity lag of the centroid of
young objects relative to the LSR can be explained by,
among other things, noncircular motions of the LSR
discussed by a number of authors (Schuter 1982;
Clemens 1985) based on their analyses of H I ra-
dial velocities. Thus Clemens (1985) inferred an LSR
tangential velocity of ∼7 km s−1 from an analysis of
H I motions in the local solar neighborhood. How-
ever, Dehnen and Binney (1998) showed that, despite
their different ages and velocity dispersions, all main-
sequence stars (except late-type В-stars) closely fol-
low a unified theoretical dependence of the sample
tangential velocity on velocity dispersion. Streaming
motions should be “washed out” by ever increasing
velocity dispersion, and we therefore consider the
above determinations of the solar velocity relative to
the LSR to be quite correct, and thus the discrepancy
in question is left unexplained. Interestingly, the he-
liocentric velocity of В-type stars inferred by Dehnen
and Binney agrees well with the velocities we inferred
for the young-object samples.
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