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Friedmannien equations 
 

The metric interval is: 
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space. 3D of

property  lgeometrica global
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:is metricFLRW 
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One can put it in the Einstein equations and obtains equation 

Friedmannien equations which describe the evolution of our 

Universe. 
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and three Friedmannien equations are: 
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Motion of test particle 

 Let consider the 
motion of a test 
particle launched from 
the Earth. If the period 
of acceleration is short 
enough, one can 
consider the motion of 
the particle as motion 
in the Earth’s 
gravitational field 
only.  
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The equation of energy conservation provides us with equation like 

const
R

GM
v  22

1. Const >0 is infinite  

     motion 

2. Const=0 is infinite 

motion with escaping 

velocity 

3. Const<0 is finite motion 

Const<0 

Const=0 

Const>0 
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A planet moves around the Sun in elliptic trajectory. The Sun is 

in a focus  of the ellipse. 

Here is attraction body (the Sun) and a planet which is moving 

the gravitational field of the Sun (in fact, in sum of the two 

fields: the Sun and the planet). 
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Our Universe is filled with matter media. The matter in the 

Universe is distributed homogeneous and isotropic. 

Homogeneity is independence of the main physical matter 

characteristics of position in space, while isotropy is a 

independence of that in different directions. So, the motion of 

the matter is not the same as motion of a planet around the 

Sun.  

density? shomogeneou of

 case in theit  solvecan  one How

)(4 tG 



8 

The motion of the Universe (filled 

homogeneously by matter) is similar, but not 

exactly the same as keplerian motion of 

celestrial bodies in our solar system. 

 

We have to consider the motion of matter 

media in gravitational field of the media.  

 

The solution in  ordinary integral diverges. 
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r(t)=a(t)x   here r is distance to test particle and x is  

lagrangian coordinate of this particle, a(t) is called  

scale factor.  

r 

x 
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Equation of energy conservation 
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Thermodynamical Relations (equations) 

Here we will use equations of the special relativity (SR) 

and thermodynamical equations. The equation  of SR is 

2McE 

0 pdVdE

energy- mass equation 

entropy conservation 
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22 VcMcE 

differential of both sides of the equation is 

22 dVccVddE  

using the entropy conservation equation and substitute it 

one can get equation for density evolution or  

third Friedmannien equation 

022  dVccVdpdV  or 

Vdt

dV

c

p

dt

d
)(

2
 





15 

if  one remind the equation for volume 
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How one can obtain the equation of a rocket motion? 

const
R

GM
v  22

One can apply the differentiation with respect to time to  

both sides of this equation 
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The first term reads 
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velocity is cancelled in both sides, so one remains with  

the equation of motion 

2r

MG
r 

minus sign designate attraction 

The same procedure can be applid to obtain cosmological 

equation of motion 
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To calculate derivative of mass with respect to time we have  

remember the thermodynamical and SR equations. 

2McE  0 pdVdE

from these follow 
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from that follows 
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the derivative of volume with respect to time   

one can do as follows 
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and after this procedure one can cancel velocity r

and obtain the following equation 
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One can substitute eulerian coordinate r(t)  by lagrangian  
coordinate  x according to equation r(t) = a(t) x and obtain 

the second Friedmannien equation: 
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In fact, eulerian coordinate is changed during the Universe  

evolution and lagrangian coordinate does not changed. 
So, we can conclude that spatial coordinate x forms a  

comoving coordinate system in the sense that typical galaxy 

has constant lagrangian coordinate. 
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The dust dominated Universe    p=0 
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Negative sign = attraction 

The radiation dominated Universe    p=e/3 
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Negative sign = attraction. The mixture of these types of 

matter produces attraction. 



25 

Let us consider negative relativistic pressure 

2cp 

in this case 
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The analysis of solution  

of   

Friedmannien equations 
 

The metric interval is: 

  222222222 sin)()(  ddrfdrtadtcds 
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and three Friedmannien equations are: 
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The dust dominated Universe 

p=0  and our equation become 
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The third equation can be rewritten as follows 

  03 a
dt

d
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and the solution is 
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or 
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If k>0 then  
crit 0

and our Universe is closed and finite in volume 

If k=0 then crit 0

and our Universe is flat and infinite in volume 

If k<0 then crit 0

and our Universe is open and infinite in volume 
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If k=0 the equation becomes 
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The W  parameter 

One can introduce the W parameter which is more convenient 

in many cases 

crit


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the closed Universe 

the flat Universe 
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35 

 

parameterdensity 

present  for the is  

1
2

1

2

0

0

2

0

2

0

2



 aH
kc

If  we have a Universe filled with different types of matter Ω 

parameter is sum of several contribution. 

...0000   rm



36 

The radiation dominated Universe 

p=rc2
/3  and k=0 Friedmannien equations become 
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The third equation can be rewritten as follows 
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photon’s mass red shifted during expansion.  

Therefore, this is valid for relativistic particles 
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If k=0 the equation becomes 
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The vacuum dominated Universe 
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In this case the solution of Friedmannien equations is 

Hteata 0)( 
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The Standard Cosmological Model 

 The Standard Cosmological Model is: 

 the model of expanding Universe with flat 

hypersurface which is filled by different types of 

matter: small amount of relativistic matter 

(photons), baryonic matter and dark matter which 

also obey dust like equation of state, and dark 

energy or quintessense which obeys vacuum 

dominated equation of state. 
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WMAP 
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and three Friedmannien equations are: 
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and contribution of different type of matter in density is: 

According to WMAP the total density of our Universe is: 

Wtotal=1 

W0m=0.27     and      Wq=0.73 

Therefore, the first Friedmannien equation is: 
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here W0r is present density of the CMBR with respect to critical 

density 
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RED SHIFT 

 The red shift is most known cosmological 

phenomena. 

z
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v is velocity of an emitter which is moving from observer 
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The general description of the phenomena is as follows:  

a spectral line from another galaxy ia emitted with the  

same frequency as in laboratory. But observed frequency 

is different. 

 

Let consider the motion of light rays in the expanding Universe. 

The light ray is moving along a straight line according to the  

equation ds=0. This equation is postulate of the Special Relativity 

Which is valid in general Relativity too. In the expanding Universe 

metric  has form (flat hypersurface): 

  222222222 sin)(  ddrdrtadtcds 
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Let assume that an observer is in the center of spherical  

coordinate system and the light rays move along the radial 
coordinate. So, we can put dq=0, df=0. 

 

In this case metric equation is reduced to form 

0)( 222  rtadt or 
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In this equation t is physical time. One can introduce new variable 

 which is called conformal time. The equation for this time is  
d=dt/a(t). In this case the solution of above equation is very simple  

oeoe rr 

Now one can calculate the interval of an event in emitter and  

in observer. Suppose that the lagrangian distance ( r ) between 

the emitter and the observer is constant.  In this case interval 
of  an event at emitter position ( D ) is equal to interval at 

observer position: 
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One can rewrite this equation in terms of physical time as 
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for  
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The definition of cosmic distance is: 
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Also one can rewrite the equation for red shift in the form 
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and obtain the Hubble parameter as function of red shift 
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and one can substitute these equations into definition of 

cosmic distance and obtain the equation which determines 

the distance to object as a function of its red shift: 
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