ПРОБЛЕМЫ ИССЛЕДОВАНИЯ СВЕРХНОВЫХ ЗВЁЗД

М. В. Пружинская

PLAN

- Historical aspect
- Classification problem
- Statistics
- Core-collapse supernovae
 - SN IIP vs. SN IIL
 - Progenitors
 - Stripped-envelope supernovae
 - SNe and GRBs
- Thermonuclear supernovae or Type Ia Supernovae
 - Progenitor problem
 - Cosmology
 - Standardization problem
 - Modern cosmological analyses
 - H0 tension
- Super-luminous supernovae (homework)

HISTORICAL SUPERNOVAE

: 後下元

«On the 7th day of the month, a chi-szū day, a great new star appeared in company with Antares», 1500 BC, China

SN 1006

SN 1054 (Crab Nebula)

SN 1572 (Tycho Brahe) SN 1604 (Johannes Kepler)

GREAT DEBATE, 1920

Harlow Shapley

«ISLAND UNIVERSES»

Heber D. Curtis

Edwin Hubble

«ON SUPER-NOVAE»

- 1934 term «super-nova»
- 1936 first supernova survey at the Palomar observatory (US)
- 1938 SNe are more uniform than novae, that makes them suitable as extragalactic distance indicators

Walter Baade

CLASSIFICATION PROBLEM

7

- Ia: 91T-like, 91bg-like, super-Chandra events, 2002cx-like (Iax), Ia-CSM
- + Ib/Ic: Ibn, double-peaked Ib, Ca-rich Ib, long rising events, rapid decliners
- II: slowly-rising, IIb, IIn, low-luminosity IIP

CLASSIFICATION PROBLEM

Avishay Gal-Yam «Observational and Physical Classification of Supernovae», 2017

Main idea: class names clearly separate assumptions about the physical origin of events and observational properties

SNAAX.Y iX.Y mX.Y vX.Y rX.Y dX.Y

AA = «la» or «CC»

«0» – H, «1» – no H but He, «2» – neither H, no He

optional tags: «i» – interaction; «m» – magnitude offset; «v» – shift in velocity; «r» – rise time to peak, «d» – decline rate

 See also Prentice & Mazzali for «physically motivated classification of strippedenvelope supernovae», 2017.

LIGHT CURVES AND SPECTRA

S. Lisakov, PhD 2018

STATISTICS

The Open Supernova Catalog includes metadata for 59,603 supernovae

Fraction of supernovae with light curves (5 or more detections) and spectra

CORE-COLLAPSE SUPERNOVAE

CORE-COLLAPSE SUPENOVAE

BASIC PROPERTIES

- + Explosion of massive stars ($> 8 10 M_{\odot}$)
- SNe II: red supergiant progenitor (pre-explosion images)
- Formation of compact object (i.e., NS/BH)
- SNe II: strong hydrogen lines in peak light and late time spectra
- In star forming regions of spiral galaxies (not found in elliptical)
- Core-collapse SNe in the Milky Way: SN 1054 (Crab Nebula)
- Cosmology with SN IIP (the Expanding Photosphere Method; see Kirshner & Kwan 1974; Nugent & Hamuy, 2017):

+: direct, no cepheid calibration

-: SNe IIP are not luminous

SN IIP VS. SN IIL

PROGENITORS

Red Supergiant Progenitor of Supernova 2008bk

Mattila et al. (2010)

PROGENITORS

SN 1987A

- + 23 Feb 1987 in LMC
- + Brightest SN since 1604
- First SN detected in neutrinos.
- Visible (reached 3 mag) by naked eye
- ◆ Progenitor: ~20 M_☉ blue supergiant (e.g., Woosley, Pinto & Ensman 1988; Podsiadlowski, 2017; Fröhlich et al., 2019)
- 3-ring structure (pre-SN wind)

NASA, ESA, R. Kirshner, P. Challis

STRIPPED-ENVELOPE SUPERNOVAE

WR progenitors?

CORE-COLLAPSE SUPERNOVAE AND GAMMA-RAY BURSTS

- Up to now: ~20 spectroscopically confirmed GRB-SNe
- ~30 photometrical detections of GRB-SNe
- For a review see Z. Cano 2017

Observational problems:

not all GRBs are accompanied with SNe

never with Ib only Ic-BL

there are Ic-BL without GRB (e.g. Japelj et al., 2018)

GRB 980425 / SN 1998bw First optical counterpart

Galama et al. 1998 $z = 0.0085, \sim 40 \text{ Mpc}$ $M_R = -19.36^m \pm 0.05^m$

TYPE IA SUPERNOVAE

TYPE IA SUPENOVAE

BASIC PROPERTIES

- Thermonuclear explosion of Chandrasekhar mass (~1.4 M⊙) CO white dwarf
- Matter accretion onto a white dwarf in a binary system
- No compact remnant
- The burning produces ~0.6 M⊙ of ⁵⁶Ni, the decay of which powers the light curve (⁵⁶Ni→⁵⁶Co→⁵⁶Fe)
- In all types of galaxies
- Possible Type Ia in the Milky Way: Tycho, Kepler SNe

SN IA PROGENITOR PROBLEM

Single degenerate scenario (SD)

Whelan and Iben 1973

ESO/M. Kornmesser

Double degenerate scenario (DD)

Iben and Tutukov 1984; Webbink 1984

ESO/L. Calçada

No confident detection the hydrogen from the nondegenerate companion The collapse is expected rather than the explosion (e.g., Nomoto & Kondo, 1991; Pakmor et al., 2010)

SN IA PROGENITOR PROBLEM

DELAY TIME DISTRIBUTIONS

Lipunov et al., 2011

Claeys et al., 2014

- Polarization observations (Wang & Wheeler, 2008)
- Measurement of unburnt fuel (e.g., Livio 2000; Parrent et al., 2011, Taubenberger et al., 2011)

To correctly compare the observations with theory the full-scale 3D simulations are needed.

SN IA PROGENITOR PROBLEM

Core degenerate scenario (CD)

Non-Chandrasekhar-mass Explosions

Sub-Chandrasekhar e.g. Polin et al., 2019

Super-Chandrasekhar e.g. Fink et al., 2018

- M. Livio

to account for all sub-classes and peculiar events

Soker 2011; Wang et al., 2016

«The fact that we are still uncertain about the nature of the progenitor systems of Type Ia supernovae – some of the most powerful explosions in the universe – has become a major embarrassment for modern astrophysics».

WHY SN IA FOR COSMOLOGY?

$$\checkmark$$
 Very luminous ($L \sim 10^{43} \text{ erg s}^{-1}, M_B^{\text{max}} \sim -19.5^{\text{m}}$)

Uniform light curves

B. Schmidt & A. Riess (High-z SN Search); S. Perlmutter (Supernova Cosmology Project)

B. Schmidt vs. S. Perlmutter (Noble Prize 2011)

70% Dark Energy 25% Dark Matter 5% Ordinary Matter

STANDARDIZATION PROCEDURE

RUST-PSKOVSKII RELATION

 Yu. P. Pskovskii, Soviet Astronomy 21, 675-682, 1977
 -21.3 + 0.11β = M_{pg} ± 0.5
 B. W. Rust, BAAS 7, 236, 1975 (PhD thesis 1974)

 $M_0 = (-18.55 \pm 0.68) - (0.0512 \pm 0.0359)\Delta t_c$

♦ M. M. Phillips, Astrophysical Journal Letters, 413, 105–108, 1993 $M_{R}^{max} = (-21.726 \pm 0.498) + (2.698 \pm 0.359)\Delta m_{15}(B)$

STANDARDIZATION PROCEDURE

CURRENT STATE

SALT2 (Guy et al., 2007) SUGAR (Léget et al., 2020)

Intrinsic luminosity dispersion in JLA ~0.11 mag SNe Ia are neither standard candles, nor standardizable!

SNIA – STANDARD CANDLES?

- Absorption in the Galaxy, in host galaxies (e.g. Goobar, 2008; Brout & Scolnic, 2020)
- Chemical composition of progenitor systems
- Different scenarios of Type Ia SNe explosions (SD, DD)
- Evolution of the mass of white dwarfs with Hubble time (e.g. Bogomazov & Tutukov, 2011)
- Observational selection effects (e.g. Malmquist bias)

ENVIRONMENTAL DEPENDENCIES

- host galaxy morphology and stellar population age (Hamuy et al., 1995, 1996, 2000; Riess et al., 1999; Sullivan, 2003; Hicken et al., 2009; Pruzhinskaya et al., 2011; Hill et al., 2016; Henne et al., 2017)
- ✦ galocentric distance (Sullivan et al., 2003; Hill et al., 2016)
- SFR (Sullivan et al., 2006; Neill et al., 2009; Lampeitl et al., 2010; Sullivan et al., 2010; Smith et al., 2012; Johansson, 2013)
- Iocal SFR and Iocal colour (1-3 kpc; Rigault et al., 2013; Roman et al., 2018)
- stellar mass of host galaxy (Kelly et al., 2010; Sullivan et al., 2010; Johansson 2013; Kim et al., 2019)
- host metallicity (Gallagher et al., 2005,2008; Howell et al., 2009)

ENVIRONMENTAL DEPENDENCIES

Betoule et al., 2014

The environmental correction

is not implemented to the SN Ia standardization equation

$$\begin{aligned} \text{DODERN COSMOLOGICAL ANALYSES} \\ \text{LUMINOSITY DISTANCE-REDSHIFT RELATION} \\ \mu &= m_B - (M_B - \alpha x_1 + \beta c) \\ \mu^{th} &= 5 \lg d_L - 5 \\ d_L(z) &= \frac{c}{H_0} (1+z) \int_0^z \frac{dz'}{\sqrt{\Omega_m (1+z')^3 + \Omega_k (1+z')^2 + \Omega_{DE} (1+z')^{3(1+w)}}} \\ \text{+ Flat } & \text{ACDM model } (w = -1, \Omega_k = 0) \\ \text{+ Non-flat } o \text{CDM model } (w = -1, \Omega_k \text{ varies}) \\ \text{+ Flat } w \text{CDM model } (w_0 \text{ varies}, w_a = 0, \Omega_k = 0) \\ \text{+ Flat } w \text{CDM model } (w_0 \text{ and } w_a \text{ both vary}, \Omega_k = 0) \\ \text{+ Flat } w_0 w_a \text{CDM model } (w_0 \text{ and } w_a \text{ both vary}, \Omega_k = 0) \end{aligned}$$

MODERN COSMOLOGICAL ANALYSES

Joint Light Curve Analysis (JLA, Betoule et al., 2014)

740 spectroscopically confirmed SNe Ia:

- ◆ Low-z (z < 0.1)</p>
- ◆ SDSS (0.05 < *z* < 0.4)
- ◆ SNLS (0.2 < *z* < 1)
- ◆ HST (0.7 < *z* < 1.4)

MODERN COSMOLOGICAL ANALYSES

Pantheon sample (Scolnic et al., 2018)

31

1048 spectroscopically confirmed SNe Ia:

- Low-z, SDSS, SNLS, HST
- + +279 Pan-STARRS1 (0.03 < z < 0.68)</p>

For the flat Λ CDM cosmology $\Omega_{\Lambda} = 0.702 \pm 0.022$ (Scolnic et al., 2018)

- + H0 = 627 km s⁻¹ Mpc⁻¹ (Lemaître, 1927; 1931)
- + H0 = 461 km s⁻¹ Mpc⁻¹ (Robertson, 1928)
- + H0 = 500 km s⁻¹ Mpc⁻¹ (Hubble, 1929)

«If true, – will enable us to establish a relative, as well as absolute, cosmic distance scale which is more reliable than any of the scales currently in use»

– Zwicky 1961

Before 1992 (see Branch & Tammann, 1992)

 Table 5.
 Summary of SN Ia absolute magnitude calibrations

Method	$M_{\rm B}^{\rm oo}$	Weight
Historical Galactic supernovae	-19.7 ± 0.6	1
SNe Ia in nearby galaxies	-19.8 ± 0.3	1
SNe Ia in the Virgo Cluster	-19.6 ± 0.4	2
Thermal emission	-20.1 ± 0.7	0
Nickel-Cobalt Radioactivity	-19.4 ± 0.4	2
Adopted:	-19.6 ± 0.2	

After 1992

32

- Cepheids based calibration (P-L relation)

The method became available with commissioning of the HST

SH0ES: SNe, H0, for the Equation of State of dark energy

Riess et al., 2019:

☑ HST 70 new cepheids in LMC

☑ new 1.2% geometric distance to the LMC measured by Pietrzynski et al., 2019

 \mathbf{M} H0 = 74.03 ± 1.42 km s⁻¹ Mpc⁻¹ (1.9%)

It is 6.6 km s⁻¹ Mpc⁻¹ larger and 4.4σ discrepant with the value of

 $H0 = 67.4 \pm 0.5 \text{ km s}^{-1} \text{ Mpc}^{-1}$

(Planck Collaboration et al., 2018)

It represents a 10% difference between the two distance scales

00

□ SN systematics: for their presence in nearby $(z \le 0.01)$, late-type, globally star forming, non-edge on hosts which would thus be expected to yield a good sample of Cepheids

☐ 50% of HD SN sample from star-forming environment

■ Environmental parameter that appears to correlate with SN distance residuals → no influence (?) → use same environment

Correcting for this bias **Rigault et al., 2015** (SNfactory) found

H0 = 70.6±2.6 km s⁻¹ Mpc⁻¹ when using the LMC distance, Milky Way parallaxes and the NGC 4258 megamaser as the Cepheid zeropoint,

H0 = 68.8±3.3 km s⁻¹ Mpc⁻¹ when only using NGC 4258. This correction brings the direct measurement of H0 within $\sim 1\sigma$ of measurements based on the CMB power spectrum.

Riess et al., 2019:

- New physics as Riess suggested; could include evolution of the dark energy equation of state, or an increase in the energy density of radiation in the early universe.
- Local bubble an effect of this kind is too small to explain the magnitude of observed tension (Wu & Huterer, 2017; Lombriser 2020)
- Effect of weak lensing on the SNe Ia measurements (increases with redshift)

Freedman et al., 2019:

- **V** Use calibration of the Tip of the Red Giant Branch
- Cepheid independent
- MD 100 well-observed SNe Ia (Carnegie Supernova Project)

H0 = 69.8 ± 0.8 (stat) ± 1.7 (sys) km s⁻¹ Mpc⁻¹

Figure 17. A plot of H_0 values as a function of time. The points and shaded region in black are those determined from measurements of the CMB; those in blue are Cepheid calibrations of the local value of H_0 ; and the red points are TRGB calibrations. The red star is the best-fit value obtained in this paper. Error bars are 1σ .

It agrees at the 1.2σ level with that of the Planck Collaboration et al. (2018) estimate, and at the 1.7σ level with the HST SH0ES measurement of H0 based on the Cepheid distance scale

«Recent measurements of the local expansion rate have been made based on a number of alternative methods including strong gravitational lensing (Suyu et al., 2017; Birrer et al., 2018), the Tully-Fisher relation using the TRGB (Mould & Sakai, 2008) or Cepheids (Sorce et al., 2013), the optical counterpart to GW170817 (Abbott et al., 2017), in addition to the Cepheid calibration of SNe Ia (Riess et al., 2011; Freedman et al., 2012; Riess et al., 2016; Burns et al., 2018). All of these studies find H0 values in the range of 70-74 km s⁻¹ Mpc⁻¹, with individual uncertainties quoted in the 3-10% (2-7 km s⁻¹ Mpc⁻¹) range. **None of them meaningfully overlap the Planck result**, **none of them fall on the low side of the Planck result**, as would be expected if they were randomly sampled measurements and the Planck H0 value were the 'true' H0 value» – Freedman et al., 2019.

G. Paturel in **1983:**

A. Sandage in **1993:**

Fig.8.2. A not really so old way to H, devised by Paturel (1983).

We in **2020:** Really, not ...

SUPER-LUMINOUS SUPERNOVAE

SUPER-LUMINOUS SUPERNOVAE

SUPER-LUMINOUS SUPERNOVAE

+ SLSN I

hydrogen-poor, fast-evolving light curves

+ SLSN II

hydrogen-rich, signs of interaction with CSM

+ SLSN R

hydrogen-poor events with slowly-evolving light curves, powered by the radioactive decay of ⁵⁶Ni

For review see Moriya et al., 2018

SLSN I

- ♦ Extreme peak luminosities (brighter than -22 mag absolute)
- Very blue spectra with significant ultra-violet flux persisting for many weeks
- The host galaxies of these events are typically dwarf galaxies
- LC rise times below 50 days and post-peak slopes that decline substantially faster than radioactive cobalt decay rates

Moriya et al., 2014

SLSN R

Objects of this sub-class are exceedingly rare

 ◆ Powered by large amounts (~5 M⊙, SN Ia: ~0.6 M⊙) of radioactive ⁵⁶Ni (suffix «R»), produced during the explosion of a very massive star

42

SLSN II

The most commonly observed class of SLSN

Interaction between SN Ejecta and Dense CSM LBVs as SN progenitors?

Moriya et al., 2014

A LOT OF PROGRESS IS ACHIEVED IN SUPERNOVA STUDIES BUT THERE IS ALWAYS ROOM FOR IMPROVEMENT