МГУ им. М.В. Ломоносова Физический факультет Кафедра астрофизики и звездной астрономии Кафедра экспериментальной астрономии

Методическое пособие к задаче специального астрономического практикума для студентов 4 курса физического факультета МГУ, обучающихся по программе МС_Астрономия (специальность 03.05.01 "Астрономия")

ОПРЕДЕЛЕНИЕ ФИЗИЧЕСКИХ ХАРАКТЕРИСТИК И ПОКРАСНЕНИЯ ЦЕФЕИД ПО ФОТОМЕТРИЧЕСКИМ И СПЕКТРАЛЬНЫМ ДАННЫМ"

Составители: проф. Расторгуев А.С. к.ф.-м.н. Заболотских М.В.

Москва, 2023

Введение

Как хорошо известно, цефеиды благодаря наличию у них зависимости "период пульсаций – светимость" (далее PLR от Period-Luminosity Relation) являются важнейшими яркими "стандартными свечами", позволяющими довольно точно оценивать расстояния до галактик вплоть до десятков мегапарсек. Именно на основе цефеидных расстояний галактик, содержащих Сверхновые, сделаны калибровки закона Раста-Псковского-Филипса (скорость падения блеска – блеск в максимуме Сверхновых типа Ia), использующиеся в настоящее время в качестве одного из основных элементов универсальной шкалы расстояний. Очевидно, что в этой ситуации надёжность шкалы расстояний далёких галактик в значительной степени зависит от того, насколько точно определяются светимости цефеид, использованных для калибровки параметров PLR.

Существует несколько методов калибровки PLR цефеид. В наименьшей степени от физической природы объектов зависит метод тригонометрических параллаксов. Большие ожидания связаны с результатами миссии GAIA, в программе которой измерение параллаксов более 15000 цефеид Галактики всех типов [1]. Однако в настоящее время тригонометрические параллаксы GAIA ещё недостаточно точны в случайном смысле и обременены зонально-фотометрическими систематическими ошибками.

В течение длительного времени в астрономии использовались PLR, выведенные примерно по десятку цефеид с периодами до 10 суток – доказанных членов молодых рассеянных скоплений [2, 3], расстояние до которых уверенно определяется методом наложения теоретических изохрон на главные последовательности скоплений. Этот метод калибровки PLR остаётся весьма перспективным. Следует, однако, иметь в виду, что применение выведенной по этим цефеидам PLR к далёким галактикам, в которых ярчайшие наблюдаемые цефеиды имеют гораздо бОльшие периоды, достигающие 100 суток, не вполне корректно и может приводить в систематическим ошибкам расстояний, и как следствие – появлению ошибок в калибровках других "стандартных свечей".

В разное время до 30-50 цефеид с той или иной степенью уверенностью считали кандидатами в члены рассеянных скоплений [4, 5]. Важно понимать, что большим преимуществом метода калибровки PLR по цефеидам – членам рассеянных скоплений является возможность весьма надёжного определения избытка цвета, что вообще характерно для метода наложения изохрон. В эпоху GAIA этот способ калибровки PLR имеет большие перспективы. Так, в недавней статье [6] уверенными членами скоплений считаются 19 цефеид, но предполагается, что почти 140 цефеид с вероятностью более 10% также могут быть генетически связанными со скоплениями. Напротив, в работах [7–9] приводятся обновлённые с учётом астрометрических результатов миссии GAIA списки, содержащие всё те же 30-50 пар цефеид и рассеянных скоплений. В работе [10] по 34 цефеидам – членам скоплений с данными GAIA DR3 выполнена одна из наиболее точных калибровок абсолютных величин и индексов Визенхайта как функций периода.

Наконец, с помощью различных современных вариантов метода Бааде-Беккера-Весселинка на основе фотометрических данных и лучевых скоростей удаётся рассчитать не только изменение радиуса пульсирующей переменной и средний радиус, но и определить расстояние до неё и светимость [4, 11–14]. В большинстве посвящённым цефеидам работ применялся так наз. метод поверхностной яркости, впервые предложенный Барнсом и Эвансом [15]. В дополнение к цефеидным наблюдательным данным он использует цветовые калибровки "параметра поверхностной яркости" – комбинации логарифма эффективной температуры и болометрической поправки: $F_{\lambda} = lg T_{eff} + 0.1 \cdot B.C.(\lambda)$ (здесь $B.C.(\lambda)$ – болометрическая поправка для используемой фотометрической полосы λ).

Физические основы метода

Индикатором скорости изменения радиуса звёздной фотосферы -dR/dt на любой фазе пульсаций является лучевая скорость звезды V_r , которую можно рассматривать как средневзвешенное значение проекции скорости оболочки на луч зрения, учитывающее также потемнение диска звезды к краю лимба. В первом приближении скорости пропорциональны. Поэтому, интегрируя кривую изменения лучевых скоростей, мы можем рассчитать кривую изменения линейного радиуса фотосферы и средний радиус звезды. Для этой цели одновременно используются спектральные наблюдения (кривые изменения лучевых скоростей) и фотоэлектрические кривые изменения блеска и показателя цвета.

В основе метода Бааде-Беккера-Весселинка лежит физически обоснованное предположение, что в двух фазах пульсационного цикла звезды, соответствующих одному и тому же показателю цвета (т.е. одинаковой эффективной температуре и поверхностной яркости), различие абсолютного блеска звезды связано с отношением её радиуса в этих фазах (рис. 1). Это значит, что по разности значений блеска Δm в этих фазах можно определить *отношение* значений радиусов, которые имеет звезда в эти моменты времени, а интегрированием кривой изменения лучевых скоростей между двумя фазами с одним и тем же показателем цвета получаем *разность* этих значений радиусов. По парам отношений и разности радиусов, как легко понять, несложно найти их абсолютные значения.

Рис. 1. Иллюстрация метода Бааде-Беккера-Весселинка. Показана кривая блеска и указаны фазы пульсаций с одинаковыми значениями показателя цвета (*B-V*).

Появление в последние годы массового мониторинга лучевых скоростей цефеид и других пульсирующих переменных звёзд с характерными точностями порядка 0.5–1 км/с стало хорошей основой многочисленных работ по определению их пульсационных радиусов и астрофизических параметров.

1. Метод поверхностной яркости (моделирование изменений радиуса)

Первоначально метод Бааде-Беккера-Весселинка развивался как *метод* поверхностной яркости (SB, Surface Brightness). Приведём его краткое обоснование. Пусть звезда имеет видимый угловой диаметр Θ_{LD} (индекс LD означает, что видимый угловой диаметр определяется с учетом потемнения диска звезды к краю лимба – Limb Darkening) и создает освещённость E_{λ} в цветовой полосе λ (рис. 2).

Рис. 2. Иллюстрация метода SB (поверхностной яркости).

Освещённость E_{λ} может быть вычислена через поверхностную яркость звезды Φ_{λ} и её угловой диаметр Θ_{LD} по очевидной формуле $E_{\lambda} \sim \Phi_{\lambda} \cdot \Theta_{LD}^{2}$, причём, что весьма важно, поверхностная яркость не зависит от расстояния до звезды. Так как видимая величина звезды m_{λ} непосредственно определяется освещённостью, то $m_{\lambda} \sim -2.5 \ lg \ E_{\lambda}$, легко можно показать, что

(1) $lg \Theta_{LD} \approx -0.2 m_{\lambda} - 2 F_{\lambda} + c,$

где так наз. параметр поверхностной яркости, точное выражение для которого имеет вид $F_{\lambda} = lg T_{eff} + 0.1 \cdot B.C.(\lambda)$ (здесь $B.C.(\lambda)$ – болометрическая поправка для используемой фотометрической полосы λ), логарифмически связан с поверхностной яркостью Φ_{λ} : $F_{\lambda} = -2.5 \cdot lg \Phi_{\lambda}$. Поскольку поверхностная яркость подчиняется закону Стефана-Больцмана $\Phi_{\lambda} \sim T_{eff}^{4}$ и, кроме того, логарифм эффективной температуры и болометрическая поправка связаны с показателем цвета CI_{λ} (CI от Color Index), в первом приближении линейным соотношением

 $F_{\lambda} \approx a \cdot CI_{\lambda} + b.$

(2)

Из выражений (1) и (2) легко получаем основную нелинейную формулу метода поверхностной яркости, или метода моделирования изменений углового диаметра:

(3)
$$lg \Theta_{LD} \approx -0.2 m_{\lambda} - 2 \cdot a \cdot CI_{\lambda} + const = lg \{ 2(\langle R \rangle + r)/d \}$$

В ней m_{λ} есть кривая блеска звезды, а CI_{λ} – её кривая изменения показателя цвета. При использовании этой формулы следует помнить, что m_{λ} , CI_{λ} – исправленные за межзвёздное поглощение блеск и показатель цвета звезды.

Интегрирование кривой изменения лучевой скорости даёт кривую изменения линейного диаметра звезды $D = d \Theta_{LD}$ и, сравнив её с вычисленным изменением видимого углового диаметра, мы можем определить расстояние d до звезды (так наз. *пульсационный параллакс*). Калибровки «параметр поверхностной яркости – нормальный цвет» обычно получают по фотометрическим наблюдениям звёзд постоянного блеска (карликам, гигантам, сверхгигантам) с надёжно определёнными (тригонометрическими) расстояниями и радиусами или теоретическими методами синтетической фотометрии. Приведём пример одной из калибровок параметра поверхностной яркости F_V по нормальному цвету (*V*-*K*)₀: $F_V \approx (3.934 \pm 0.005) - (0.123 \pm 0.002) \cdot (V-K)_0$ [16].

2. Метод моделирования кривой блеска

Этот вариант первоначально был предложен Балона [17]. В оригинальном виде он позволяет определить только средний радиус цефеиды, но, в отличие от метода поверхностной яркости, но при этом не требует *априорного знания величины покраснения и других калибровок* (в нём неявно используется предположение, что цветовые калибровки

lg T_{eff} и *B.C.* имеют полиномиальный вид). Примеры подобных калибровок показаны на рис. 3.

Рис. 3. Калибровки "нормальный цвет – эффективная температура" (слева) и "нормальный цвет – болометрическая поправка" (справа), взятые из статьи [21]. Указан интервал нормальных цветов, характерных для классических цефеид разных периодов, где калибровки для разных классов светимости (карликов, гигантов, сверхгигантов) практически совпадают и их можно аппроксимировать полиномами по (*B***-V**)₀.

Расторгуев и др. [18-20] радикально улучшили метод моделирования кривой блеска и продемонстрировали возможность независимого определения не только радиуса, но и избытка цвета в случае использования нелинейных калибровок эффективной температуры и болометрической поправки. Используя закон Стефана-Больцмана, можно записать следующее основное выражение для болометрической светимости в любой пульсационной фазе цефеиды:

$$L_{bol} = 4 \pi R^2 \sigma T^4_{eff}$$

где R – текущее значение радиуса звезды, T_{eff} – эффективная температура, σ - постоянная Стефана-Больцмана. Значение разности болометрических звездных величин звезды и Солнца определяется соотношением:

$$M_{bol} - M_{bol}^{\circ} = -2.5 \ lg \ (L_{bol} / L_{bol}^{\circ}),$$

откуда найдём абсолютную болометрическую величину звезды

(4)
$$M_{bol} = -5 \, lg \, R/R_{\odot} - 10 \, lg \, T_{eff} + M_{bol}^{\circ} + 10 \, lg \, T_{eff}^{\circ},$$

где M_{bol}° и T_{eff}° – абсолютная болометрическая звездная величина и эффективная температура Солнца, R/R_{\circ} – значение радиуса цефеиды в данной фазе (выраженное в единицах солнечного радиуса). Подставив в (4) $M_{bol} = M_V + B.C.(V)$, а также, выразив абсолютную величину через видимую величину, расстояние и поглощение, запишем основное модельное соотношение (4) в окончательном виде

(5)
$$V = -5 \, lg \, R/R_{o} + (V - M_{V})_{app} - (B.C. + 10 \, lg \, T_{eff}) + (M_{bol}^{o} + 10 \, lg \, T_{eff}^{o}),$$

где $(V-M_V)_{app}$ – видимый модуль расстояния в полосе V. В более компактном виде модель кривой блеска можно записать так:

(6)
$$V = -5 lg R/R_{o} + Y - \Psi(CI_{o}),$$

где введены обозначения для константы \boldsymbol{Y}

$$Y = (V - M_V)_{app} + (M_{bol}^{o} + 10 \ lg \ T_{eff}^{o}),$$

и цветовой калибровки

$$\Psi(CI_0) = (B.C. + 10 \ lg \ T_{eff})$$

– известной калибровочной функции, зависящей от нормального цвета, например, $(B-V)_{\theta}$. Заодно отметим, что $\Psi(CI_{\theta}) = 10 \cdot F_{\lambda}$ численно в 10 раз больше введённого ранее параметра поверхностной яркости. Отметим, что при строгом рассмотрении $\Psi(CI_{\theta})$ может ещё зависеть от металличности [*Fe*/*H*] поверхностного ускорения силы тяжести *lg g*.

Опыт исследования цефеид показал, что при нелинейном представлении $\Psi(CI_0)$ по нормальному цвету открывается принципиальная возможность независимой оценки избытка цвета, при котором модель (6) наилучшим образом описывает реальную кривую блеска.

3. Использование мультифазных измерений эффективных температур

В работе Расторгуева и др. [20] предложен ещё один оригинальный вариант алгоритма, сводящийся к одновременному моделированию кривой блеска и кривой изменения эффективной температуры на основе калибровочной функции $\Phi(CI_0)$. Он использует спектроскопическую информацию, а именно – имеющиеся мультифазные (т.е. проведённые для каждой цефеиды в разных пульсационных фазах) спектроскопические измерения эффективных температур (см. например, работу [22]). В рамках нового метода модель кривой блеска (6) должна быть дополнена моделированием кривой изменения эффективной температуры вида

(7)
$$lg T_{eff} = \Phi(CI_0 = CI - CE),$$

где CI, CE наблюдаемый показатель цвета (*Color Index*) и избыток цвета (*Color Excess*) соответственно, а цветовая калибровка эффективной температуры $\Phi(CI_0)$, очевидно, также является основной частью калибровочной функции $\Psi(CI_0=CI-CE)$ в выражении (6). Легко понять, что из-за высокой чувствительности оцениваемой по цвету эффективной температуры к принятому значению нормального показателя цвета CI_0 данный алгоритм позволяет наиболее точно оценить индивидуальный избыток цвета цефеиды, величину межзвёздного поглощения, светимость и расстояние. Новый метод открывает привлекательные возможности определения всей совокупности астрофизических параметров индивидуальных цефеид и независимого построения PLR на этой основе [23].

Постановка задачи, исходные данные, метод решения

Цель задачи – определить основные астрофизические параметры цефеиды:

(а) Изменения пульсационного радиуса цефеиды r(t)

(б) Средний радиус цефеиды $<\!\!R\!>$

(в) Избыток цвета *E*(*B*-*V*)

(г) Кривые изменения абсолютной болометрической величины M_{bol} и абсолютной звёздной величины M_V

(д) Средние по потоку абсолютные величины $<\!\!M_{bol}\!\!>_I$ и $<\!\!M_V\!\!>_I$

(e) Изменения *lg g* с фазой пульсаций и сравнить с измеренными значениями

(ж) Видимый и истинный модули расстояния (*V*- M_V) и (*V*- M_V)₀

(3) Сравнить найденные параметры с имеющимися результатами других исследований, в том числе соответствие найденной светимости $\langle M_V \rangle_I$ с PLR

(и) Сравнить между собой результаты, полученные с разными использованными калибровками

Для решения задачи используются следующие данные:

(1) Ряды одновременных измерений блеска в полосе V и показателя цвета (*B-V*) (сопутствующие значения периода пульсаций цефеиды и начальной эпохи прилагаются)

(2) Ряды измерений лучевой скорости

(3) Ряд спектроскопических измерений эффективной температуры T_{eff} и их ошибки

(4) Ряд спектроскопических измерений *lg g*

(5) Калибровки эффективной температуры по нормальному цвету $\Phi(CI_{\theta})$: $(B-V)_{\theta} - lg T_{eff}$

(6) Калибровки болометрической поправки по нормальному цвету $BC(CI_0)$: $(B-V)_0 - B.C.(V)$

(7) Вспомогательные необходимые данные: период P, момент максимума блеска T_0 , металличность [*Fe*/*H*] и др.

Этапы работы:

Строго говоря, моделирование кривой блеска и кривой изменения эффективной температуры в соответствии с выражениями (6-7) должно проводиться одновременно. В данной работе мы для упрощения (что практически не повлияет на результаты) разбиваем решение на два отдельных этапа.

(А) Вначале рекомендуется определить средний радиус и кривую изменения радиуса, решив модифицированную задачу моделирования кривой блеска, записанную в виде

(8)
$$V = -lg(\langle R \rangle + r(t)) + Y + \sum_{k=1}^{M} A_k \cdot CI^k,$$

где средний радиус $\langle R \rangle$ и его изменение r(t) в правой части равенства выражены в единицах солнечного радиуса, а вместо калибровочной функции $\Psi(CI_0)$ в (6) стоит полиномиальное разложение порядка M не по нормальному, как в (6), а по наблюдаемому показателю цвета. Модель вида (8) с полиномиальным разложением по цвету полностью эквивалентна модели (6), но отличается тем, что позволяет определить только средний радиус цефеиды, но не избыток цвета $CE=CI-CI_0$. При этом константа Y имеет тот же смысл, что и в модели (6).

Все необходимые рекомендации по предварительной подготовке рядов наблюдений и проведению вычислений приведены в **Приложении**.

(Б) Далее следует провести моделирование температурной кривой, т.е. подобрать такое значение *CE* – избытка цвета цефеиды – при которой массивы измеренных и вычисленных

значений эффективной температуры согласуются наилучшим образом. Оно проводится с использованием показателей цвета, заранее рассчитанных для моментов измерения температур (см. Приложение), а также цветовой калибровки эффективной температуры (7) $lg T_{eff} = \Phi(CI_0 = CI - CE)$, где CE – отыскиваемый избыток цвета. Для тех же моментов времени следует заранее вычислить значения lg g, т.к. многие цветовые калибровки эффективной температуры включают члены с lg g и металличностью [Fe/H]. Для этого в нашем распоряжении уже есть рассчитанные значения радиуса цефеиды, а её массу можно приблизительно оценить по формуле $lg M/M_{\odot} \approx 0.40 + 0.37 \cdot lg P$, выведенную на основе эволюционной теории. Легко сообразить, что после этого lg g можно рассчитать по простой формуле

(9)
$$lg g = lg g_{o} + lg M/M_{o} - 2 \cdot lg R/R_{o}$$
, где для Солнца $lg g_{o} \approx 4.438$

В данной работе предлагается использовать калибровку эффективной температуры по нормальным цветам, выведенную Расторгуевым и др. [20] по цефеидам и имеющую вид

(10)
$$lg T_{eff} = 3.88 - 0.20 \cdot (B - V) + 0.026 \cdot (B - V)^2 + 0.009 \cdot lg g - 0.010 \cdot (B - V) \cdot lg g - 0.051 \cdot [Fe/H] + 0.051 \cdot (B - V) \cdot [Fe/H]$$

(**B**) Для выполнения следующего этапа работы в нашем распоряжении уже имеются ранее вычисленные с равномерным шагом 0.01 по фазе ряды значений радиуса $R = \langle R \rangle + r$ и исправленные за покраснение *CE* ряды показателя цвета $CI_0 = CI - CE$. Этого вполне достаточно для вычисления изменений болометрической светимости по формуле

$$L_{bol}/L_{bol}^{\mathscr{O}} = (R/R_{\mathscr{O}})^2 (T_{eff}/T_{eff}^{\mathscr{O}})^4,$$

причём для оценки эффективной температуры следует использовать калибровку (10) с уже найденными для каждой фазы значениями *lg g* по формуле (9). Отсюда легко получается кривая абсолютного болометрического блеска,

(11)
$$M_{bol} = M_{bol}^{\circ} - 2.5 \cdot lg (L_{bol} / L_{bol}^{\circ}) = M_{bol}^{\circ} - 5 \cdot lg (R / R_{\circ}) - 10 \cdot lg (T_{eff} / T_{eff}^{\circ})$$

а также кривая изменения абсолютной величины в полосе $V, M_V = M_{bol} - B.C.(V)$. Для болометрической поправки B.C.(V) также используется калибровка по нормальному цвету, например, выведенная Фловером [21] (здесь $C = (B-V)_0$):

$$B.C.(V) = -0.282 + 4.31 \cdot C - 20.26 \cdot C^{2} + 43.37 \cdot C^{3} - 47.97 \cdot C^{4} + 26.34 \cdot C^{5} - 6.04 \cdot C^{6}$$

Средним блеском цефеиды, стандартно обозначаемым как $\langle V \rangle_I$, считают звёздную величину, соответствующую усреднённой по периоду пульсаций интенсивности потока от звезды; это определение относится как к видимому, так и абсолютному блеску.

(Г) Теперь можно оценить расстояние до цефеиды D, зная её средний видимый блеск, $\langle V \rangle_I$, рассчитанный средний абсолютный блеск $\langle M_V \rangle_I$, а также найденный избыток цвета E(B-V). Для этого используется стандартное выражение для видимого модуля расстояния,

$$\langle V \rangle_I - \langle M_V \rangle_I = 5 \cdot lg D/pc - 5 + R_V \cdot E(B - V)$$

Представление результатов

После завершения всех расчётов, определения среднего радиуса $\langle R \rangle$, параметров правой части выражения (8) – константы Y и набора коэффициентов A_k , следует рассчитать модельную кривую блеска и сравнить её с наблюдательными данными, представив в виде диаграммы. Хорошее совпадение является критерием качества решения. Пример соответствия «модельной» и наблюдаемой кривой блеска для одной из цефеид показан на рис. 4.

Помимо таблицы с результатами определения основных параметров цефеиды следует представить:

- кривую изменения радиуса цефеиды;
- кривую видимого блеска (полученную из наблюдений и модельную)
- кривую блеска вида "фаза абсолютная звёздная величина"

Рис. 4. Пример сравнения "модельной" (сплошная чёрная линия) и наблюдаемой (красные кресты) кривых блеска по итогам расчётов пульсационного радиуса цефеиды (82 *R*₀).

Литература

[1] Ripepi V., Clementini G., Molinaro R. et al. "Gaia DR3: Specific processing and validation of all-sky RR Lyrae and Cepheid stars – The Cepheid sample". arXiv:2206.06212.

[2] Berdnikov L.N., Vozyakova O.V., Dambis A.K. "The BVRIJHK period-luminosity relations for Galactic classical Cepheids". Astron. Lett., V.22, pp.839-846, 1996.

[3] An D., Terndrup D.M., Pinsonneault M.H. "The distances to open clusters from main-sequence fitting. IV. Galactic cepheids, the LMC, and the local distance scale". ApJ, V.671, pp.1640-1668, 2007.

[4] Turner B.G., Burke J.F. "The distance scale for classical cepheid variables". AJ, V.124, pp.2931 -2942, 2002.

[5] Anderson R.I., Eyer L., Mowlavi N. "Cepheids in open clusters: an 8D all-sky census". MNRAS, V.434, pp.2238-2261, 2013.

[6] Medina G.E., Lemasle B., Grebel E.K. "A revisited study of Cepheids in open clusters in the *Gaia* era". MNRAS, V.505, pp.1342-1366, 2021.

[7] Hao C.J. et al. "Open clusters housing classical Cepheids in Gaia DR3". A&A, V.668, A13, 2022.

[8] Lin Z. et a;. "Calibrating the Cepheid Period–Wesenheit Relation in the Gaia Bands Using Galactic Open-cluster Cepheids". ApJ, V.938, art.id.33, 2022.

[9] Zhou X., Chen X. "Galactic open cluster Cepheids – a census based on *Gaia* EDR3". MNRAS, V.504, pp.4768-4784, 2022.

[10] Reyes M.C., Anderson R.I. "A 0.9% calibration of the Galactic Cepheid luminosity scale based on Gaia DR3 data of open clusters and Cepheids". arXiv:2208.09403.

[11] Storm J. Carney B.W. et al. "The effect of metallicity on the Cepheid Period-Luminosity relation from a Baade-Wesselink analysis of Cepheids in the Galaxy and in the Small Magellanic Cloud". A&A, V.415, pp.531-547, 2004.

[12] Groenewegen M.A.T. "Baade-Wesselink distances to Galactic and Magellanic Cloud Cepheids and the effect of metallicity". A&A, V.550, A70, 2013.

[13] Gieren W., Storm J. et al. "The effect of metallicity on Cepheid period-luminosity relations from a Baade-Wesselink analysis of Cepheids in the Milky Way and Magellanic Clouds". A&A, V.620, A99, 2018.

[14] Lazovik Ya.A., Rastorguev A.S. "Calibrating the Galactic Cepheid Period–Luminosity Relation from the Maximum-likelihood Technique". ApJ, V.160, id.136, 2020.

[15] Barnes T., Evans D. "Stellar angular diameters and visual surface brightness - I. Late spectral types". MNRAS, V.174, pp.489-502, 1976.

[16] Nordgren T.E. et al. "Calibration of the Barnes-Evans Relation Using Interferometric Observations of Cepheids". AJ, V.123, pp.3380-3386, 2002.

[17] Balona L.A. "Application of the method of maximum likelihood to the determination of cepheid radii". MNRAS, V.178, pp.231-243, 1977.

[18] Расторгуев А.С., Дамбис А.К. «Классические цефеиды: новая версия метода Бааде-Беккера-Весселинка». Астрофизический Бюллетень, Т.66, с.47-53, 2011.

[19] Rastorguev A.S., Dambis A.K., Zabolotskikh M.V., Berdnikov L.N., Gorynya N.A. " The Baade-Becker-Wesselink technique and the fundamental astrophysical parameters of Cepheids". Proc. of the IAU Sympos., V.289, pp.195-202, 2013.

[20] Rastorguev A.S., Zabolotskikh M.V., Lazovik Ya.A., Gorynya N.A., Berdnikov L.N. "New Version of the Pulsating Photospheres Method: Multiphase Temeprature Measurements of Cepheids". Astrophysical Bulletin, V.77, pp.144-149, 2022 (arXiv:1911.10413, 2019).

[21] Flower P. "Transformations from Theoretical Hertzsprung-Russell Diagrams to Color-Magnitude Diagrams: Effective Temperatures, B-V Colors, and Bolometric Corrections". ApJ, V.469, pp.355-365, 1996.

[22] Luck R.E. "Cepheid Abundances: Multiphase Results and Spatial Gradients". AJ, V.155, id.111, 2018.

[23] Lazovik Ya.A., Rastorguev A.S. "Calibrating the Galactic Cepheid Period-Luminosity Relation from the Maximum-likelihood Technique". AJ, V.160, id.136, 2020.

[24] Nardetto N., Mourard D., Mathias Ph. et al., Astron Astrophys., V.471, P.661, 2007.

Приложения.

Подготовка данных

Файлы с измерениями блеска, показателя цвета и лучевой скорости содержат Юлианские даты (JD) моментов измерений (измерения блеска и показателя цвета, как правило, проводятся одновременно). Для вычислений следует перейти от Юлианских дат к фазам периода пульсации. Очевидно, значение пульсационной фазы φ есть дробная часть выражения ($JD - T_0$)/P.

Фотоэлектрические и спектральные наблюдения, как правило, проводились в разные моменты времени. Рекомендуется их "сфазировать". Для этого необходимо

экстраполировать значения блеска, показателя цвета и лучевой скорости на одни и те же значения фаз. Для плотного покрытия кривых блеска, показателя цвета и лучевых скоростей рекомендуется использовать значения фаз от 0.00 до 0.99 с интервалом 0.01. Чтобы сделать это, каждый из оригинальных рядов наблюдений (блеска, показателя цвета, лучевой скорости) следует аппроксимировать тригонометрическими рядами Фурье (с рекомендуемым порядком аппроксимации от 2-3 до 5–6, в зависимости от степени "крутизны" упомянутых кривых). Коэффициенты разложения Фурье, очевидно, могут быть определены методом наименьших квадратов. Далее с использованием сфазированной кривой изменения лучевой скорости можно путём её интегрирования по формуле (П1) рассчитать

для каждой фазы изменение радиуса переменной звезды r(t).

Сфазированные значения блеска, показателя цвета и рассчитанные значения изменений радиуса r(t) подставляются в основное выражение (8) для определения среднего радиуса $\langle R \rangle$.

Кроме того, по найденному тригонометрическому разложению наблюдений показателя цвета следует предвычислить значения показателя цвета на моменты измерения эффективных температур.

Фактор проекции

Для правильного определения пульсационного радиуса (и, соответственно, других параметров) необходим адекватный выбор значения фактора проекции pf в приведенных выше выражениях. Физический смысл и принцип расчёта pf показан на рис. П1.

Рис. П1. Иллюстрация к определению "фактора проекции" *pf*.

Вклад заштрихованного кольца (соответствующего позиционному углу φ) в наблюдаемую лучевую скорость ("вес" кольца) определяется не только проекцией его скорости на луч зрения, но и потемнением диска к краю лимба (поскольку центр диска более светлый, чем край) и с учётом этого равен

$$W(\varphi) = 2\pi r^2 \sin \varphi \cos \varphi \cdot (1 - \varepsilon + \varepsilon \cos \varphi)$$

где ε – коэффициент потемнения к краю лимба звезды. Поскольку (рис. П1) $V(\varphi) = -\dot{r} \cdot \cos \varphi$, усреднённая по диску звезды лучевая скорость будет равна

$$V_r = \frac{\int_{0}^{\pi/2} V(\phi) \cdot W(\phi) d\phi}{\int_{0}^{\pi/2} W(\phi) d\phi} = -\dot{r} \cdot \frac{\int_{0}^{\pi/2} \sin\phi \cos^2\phi (1 - \varepsilon + \varepsilon \cos\phi) d\phi}{\int_{0}^{\pi/2} \sin\phi \cos\phi (1 - \varepsilon + \varepsilon \cos\phi) d\phi} = -\frac{1}{pf} \dot{r}$$

Это и есть определение pf. Строго говоря, pf может считаться постоянным лишь в первом приближении; в действительности он может зависеть от периода пульсаций, закона потемнения диска к краю, спектральной полосы наблюдений, а также от самой скорости пульсаций фотосферы. Отклонения pf от постоянного значения могут достигать нескольких процентов.

Определение изменения радиуса r(t)

Наблюдаемая лучевая скорость цефеиды V_r отражает как пульсации оболочки (V_{pls}), так и движение звезды относительно Солнца (так называемая гамма-скорость, или средняя скорость звезды V_{γ}). Изменения пульсационного радиуса определяются только пульсационной кривой лучевых скоростей. При определении радиусов цефеид – членов двойных систем из наблюдаемой лучевой скорости следует вычесть также вклад орбитального движения (V_{orb}):

$$V_{pls} = V_r - V_{\gamma} - V_{orb}$$

В данной задаче предполагается определение радиусов только одиночных цефеид.

Изменение радиуса r (напоминаем: выраженное в единицах солнечного радиуса) между моментом начала отсчёта времени T_0 (например, момента максимума блеска) и текущим моментом можно получить прямым интегрированием пульсационной кривой изменения лучевых скоростей:

$$r = -pf \cdot P/R_{\odot} \int (V_r - V_{\gamma}) \, d\varphi$$

где P - период пульсаций звезды, R_{\odot} - радиус Солнца, φ – безразмерная фаза, отсчитываемая от момента $T_{0:} \varphi = \{ (JD - T_0)/P \} (JD$ – юлианская дата наблюдения; фигурные скобки обозначают дробную часть числа), pf – так наз. фактор проекции (от Projection Factor), связывающий лучевую скорость со скоростью движения фотосферы. Радиус r(t) будет выражен в единицах солнечного радиуса, период P – в сутках, а лучевая скорость V_r и гамма-скорость – в км/с, если последнюю формулу переписать в виде

(III)
$$r = -pf \cdot K \cdot P \int (V_r - V_\gamma) d\varphi,$$

где коэффициент K = 86400/695990. Ранее для pf часто принимали постоянное значение, равное $pf \approx 1.31$. В данной работе рекомендуется использовать другие значения pf, вычисленные в некоторых современных работах и зависящие от пульсационного периода (что отражает рост коэффициента потемнения к краю лимба звезды с увеличением периода) [24]:

$$pf = 1.376 - 0.064 lg P$$

Линеаризация уравнения

В основном уравнении метода (8) искомое значение среднего радиуса звезды $\langle R \rangle$ находится под логарифмом, т.е. уравнение *нелинейно* по этому неизвестному параметру. Для его определения и оценки ошибок лучше всего использовать алгоритмы *нелинейной оптимизации*. Если же используется стандартный линейный алгоритм наименьших квадратов, рекомендуется линеаризовать это уравнение. Раскладывать логарифм в линейный ряд по отношению $r/\langle R \rangle$ некорректно, т.к. величина $r/\langle R \rangle$ не всегда мала. Однако можно найти значение $\langle R \rangle$ последовательными итерациями. Для этого на каждом шаге $\langle R \rangle$ представляют в виде суммы предыдущего приближения R_{i-1} и поправки ΔR_i :

$$\boldsymbol{R}_i = \boldsymbol{R}_{i-1} + \boldsymbol{\varDelta} \boldsymbol{R}_i \, .$$

Мы можем считать малой величину $\Delta R_i /(R_i + r)$ и, задавая правдоподобное начальное значение R (например, 30 – 50), определить значение ΔR_I . В качестве следующего начального приближения принимают величину $R + R_I$ и повторяют итерацию. Через некоторое количество шагов (реально 3 – 5) процесс сойдется и будет определено искомое значение $\langle R \rangle$.