Dense cores and outflows in the S255 area of high mass star formation

Igor Zinchenko (Institute of Applied Physics RAS, Russia)

Sheng-Yuan Liu, Yu-Nung Su (ASIAA, Taiwan), Stan Kurtz (CRyA UNAM, Mexico), Devendra Kumar Ojha (TIFR, India), Svetlana Salii, Andrej Sobolev (Ural Fed. Univ.)

Motivation

 Detailed study of high mass star forming cores at various stages of evolution.

S255 is one of the most promising candidates.

S255 star forming region

GMRT 610 MHz (green) and IRAM 30m 1.2 mm (blue) contours overlaid on the Spitzer 8 µm image

Multi-frequency interferometric observations: SMA, VLA and GMRT

NH₃ (1,1) & NH₃ (2,2) at 1.3 cm ~ 2.5"

216.8-220.8 GHz ~ 2.5", 228.8-232.8 GHz 0.4" 277.9-279.9 GHz 287.9-289.9 GHz 342.0-346.0 GHz ~ 2" 354.0-358.0 GHz Continuum and multiple (several tens) spectral lines

Continuum at 23 and 50 cm ~ 4"

New continuum clumps

Clump parameters

Table 4
Velocities and Physical Parameters (Line Width, Linear Size, Kinetic Temperature Derived from Ammonia Observations,
Assumed Dust Temperature, Mass, Virial Mass, and Mean Density) of the Millimeter Wave Continuum Sources

Name	V _{LSR}	ΔV	L	$T_{\rm kin}({\rm NH}_3)$	T_d^a	М	<i>M</i> _{vir}	n
	$({\rm km}~{\rm s}^{-1})$	$({\rm km}~{\rm s}^{-1})$	(pc)	(K)	(K)	(M_{\odot})	(M_{\odot})	(cm^{-3})
S255IR-SMA1	4.4	3.3	0.012	240, (80 ?)	40	10	14	2×10^{8}
S255IR-SMA2	9.2	2.0	0.031	44	40	10	13	10^{7}
S255IR-SMA4	7.9	2.6	0.048	$\lesssim 20$	20	14	34	4×10^6
S255N-SMA1	8.0	3.5	0.030	29, (>200 ?)	30	23	39	3×10^7
S255N-SMA2	8.7	3.0	0.028		20	2	26	4×10^{6}
S255N-SMA3	9.0	<2	0.037	29	30	2	<10	10 ⁶
S255N-SMA4	7.0	4.2	0.020		20	8	40	2×10^7
S255N-SMA5	9.5	3.9	0.048	24	25	7	80	2×10^{6}
S255N-SMA6	8.9	4.5	0.039		20	6	80	4×10^6

Note.^a Assumed.

Zinchenko et al. ApJ 755, id.177 (2012)

An ammonia source in S255N

Two velocity components: 8 km/s (T 13 K) 10 km/s (T 23 K) The source is associated with the high velocity CO emission.

Very young outflows in the S255N area

Parameters of the Outflows in S255N-SMA3 and S255N-SMA5 (Mass, Momentum, Energy, Size, Age, Mass Loss Rate, and Mechanical Force)

Name	M (M_{\odot})	$\frac{P}{(M_{\odot} \text{ km s}^{-1})}$	E (erg)	Size (pc)	t (yr)	\dot{M} $(M_{\odot} \text{ yr}^{-1})$	$\frac{F}{(M_{\odot} \text{ km s}^{-1} \text{ yr}^{-1})}$
S255N-SMA3	0.003	0.15	8×10^{43}	0.009	200	2×10^{-5}	8×10^{-4}
S255N-SMA5	0.012	0.36	10^{44}	0.012	400	3×10^{-5}	9×10^{-4}

IRAM-30m observations

 N_2H^+ (3-2)

SiO (5-4)

Masses and densities

Masses and beam averaged volume densities estimated from dust continuum emission at 1.1 mm. Temperatures are derived from ammonia observations.

S255IR at sub-arcsecond resolution

The dynamical mass of the hot core derived from the line widths is ~ 20 M_{\odot} , which is consistent with the estimated mass of the central B1 star. The surface filling factor for the hot gas is about 0.2. A rather strong DCN emission is observed towards the hot core at the same velocity as the hot gas. This implies a presence of a cold material here.

(00027)

Declination

+20

+10

npos	(2000)	(2000)
+0.2"	6:12:54.01	17:59:23.26
0.0"	6:12:54.01	17:59:23.06
-0.2"	6:12:54.01	17:59:22.82

npos	T _k (K)	lg(N _{CH3OH} / V)	lg(n _{H2})	fil. fac. (%)
+0.2"	182.5 (170-200)	12.55 (12.45-12.70)	(3.5-9.0)	14.8
0.0"	177.5 (165-195)	12.75 (12.60-12.98)	(3.5-9.0)	16.0
-0.2"	152.5 (140-165)	12.95 (12.70-13.10)	7.25 (3.5-9.0)	15.2

Hot core temperature from CH₃CN

$CH_3OH 4_2-3_1 E$ maps Core rotation 0.5 -2 6 8 DEC offset (arcsec) 02 0 Channel maps P-V 3 2 15 2 15 15 3 2 2 4 RA offset (arcsec) RA offset (arcsec) RA offset (arcsec) RA offset (arcsec) V_{LSP} (km s⁻¹) C. Goddi et al.: H₂O and CH₃OH maser associations in AFGL 5142 and Sh 2-255 IR 24:0 0.9 1.6 2.2 2.8 Bw 3.4 23:5 59'23' 4.1 4.7 Aw 5.3 *č*(2000) 5.9 6.6 23:0 Am 8 8.8 9.6 10.4 17°59 22:5 11.2 12 Velocity 12.8 Bm 40km s^{-1} 13.6 200 AU 14.5 6^h12^m54.03 6^h12^m54.05 54.02 54³01 54°00 53[°]95 V_{LSR} (km s⁻¹) $\alpha(2000)$ RIGHT ASCENSION (J2000)

DCN in the hot core

DCN (3-2)

$^{13}CS(5-4)$

DCN abundance is $\sim 3 \ 10^{-11}$. A low temperature or a very young age are implied.

Molecular outflows in S255IR: CO (3-2) and HCN (4-3)

Outflow parameters from the CO(3-2)/CO(2-1) intensity ratio

3

4

5

log n (cm

6

The CO emission is apparently optically thin. High temperature and density are implied. The excitation increases with velocity.

Molecular outflows in S255IR: CO (2-1) at high resolution

[-51, -7] km/s [19, 71] km/s [-51, -39] km/s [51, 71] km/s

The color image shows the H_2 emission. The green contours indicate the 15 GHz radio continuum (from VLA). The blue and red contours show the CO(3-2) high velocity emission.

Maps of the radio continuum sources

Spectra of the radio continuum sources

EM from ~ 10^{6} pc cm⁻⁶ to ~ 3×10^{7} pc cm⁻⁶

Summary

- The cores are fragmentary on all observed scales. Several new clumps are detected in both S255IR and S255N with sizes ~ 0.01-0.05 pc. Their masses are estimated at a few solar masses. The properties and, apparently, evolution stages of the clumps are very different.
- New very young high velocity outflows from faint clumps without any other sign of star formation are detected.
- High velocity emission in various molecular lines is observed in the S255IR area. It looks like highly collimated outflows originating at different points. However, this can be a single powerful wide-angle outflow with the SMA1 as a driving source.
- The SMA1 hot core is rotating and probably represents a protostellar disk with a size of several AU. The beam filling factor for the 0.4" beam is ~ 0.2.
- There is a significant deuteration in all cores. In the S255IR-SMA1 a strong DCN enhancement is observed very close to the center of the hot core, implying either a presence of a cold material here or a very young age.

THANK YOU!