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Principles of GW detection
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We measure difference in the proper 
distance between beam splitter and 

end mirrors using laser interferometry 



Matched filtering
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Raw data Signal we are searching

We employ matched filtering: searching the data (deep inside the noise) using template 
waveform. This implies that we need very accurate model of the signal (to control systematic 

errors and loss in the detection). 
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Consistency check
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SB, …, IH, SP et al. PRD 87 (2013) 024003

The noise is not Gaussian: need to introduce additional consistency checks into the detection 
statistic (distribution of power in the signal across the time/frequency). 

Real signal Instrumental artifact



Template bank
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• We don’t know apriori parameters of 
the system

• We construct  the bank of templates: 
we populate the parameter space: 
uniform taking into accounts the 
correlation between templates 
(“volume of each template”)

• We filter the data through each 
template to see which fits the best

• We have used SEOBNR (non-
precessing templates)

• Total number of templates used 
~250,000

LVC: arXiv:1602.03839
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Observation
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• Used 38.6 days of calendar data, which gives 18.4 days of 
coincident data (coincident lifetime ~48%)

• 20.7 hours of this data were contaminated by known 
instrumental issues - left 17.5 days of data



Statistical significance
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LVC: arXiv:1602.03839



Signal modelling (EOB)

10



Signal modelling (EOB)
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Signal modelling (EOB)
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Signal Modelling (EOB)
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Numerical Relativity
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Solving Einstein equations “exactly” numerically: computationally very demanding
rather limited number of waveforms can be generated and they are short

NR simulations (AEI/SXS)



EOB - NR comparison
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EOB waveform, spins are aligned with the orbital momentum

Taracchini et. al. 2013



Precessing BH binary (EOB)
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IMRPhenomP
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Khan et.al. 2015

• Waveform constructed in the frequency domain
• Uses Post-Newtonian results for the early 

evolution (inspiral) of a binary (EOB)
• For  merger-ringdown part:  there  is  an  analytical 

expression  with  free  parameters  which  are 
calibrated to fit the NR data

• Precession  is  added  by  rotation  taken  from  the 
Post-Newtonian evolution

• Very fast to generate



Basic parameters of the BH binary
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Distance: 440 Mpc  (z=0.09)

m1 = 39, m2 = 30 ,   remnant mass = 67

Position: face-off, south hemisphere , 600 sq.deg.

Peak luminosity: 3.6 x 1056 erg s-1

Radiated energy: 2.25 M (between 30 and 240 Hz)

Peak amplitude freq.: 150 Hz

QNM frequency: 250 Hz, damping time: 4 ms

mass ratio ~ 0.8

Duration (from 30Hz), ~200ms, ~10 cycles



Recovered parameters of the binary
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LVC arXiv:1602.03840



Masses, distance, inclination
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Posterior distribution function for masses, distance and orbital inclination: recovered in 
post-processing analysis using Bayesian techniques.

face
offon

90% credible interval

LVC arXiv:1602.03840



Spins (IMRPhenomP)
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No precession Strong precessionSlice orthogonal to the orbital plane

LVC arXiv:1602.03840



Remnant BH
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Healy et al 2014.

• Parameters of the remnant BH: final spin 
and mass

• Obtained using the fitting expression 
calibrated using NR data(Healy et.al. 
2014)

• Mass deficit: Radiated energy: 2.25 M 
between 30 and 240 Hz

 

LVC arXiv:1602.03840



Consistency with GR (residuals study)

23



Consistency  with GR predictions
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• Study of consistency of inspiral (early orbital evolution) and merger parts of the signal: they 
show consistent estimation of the final mass and final spin of the remnant BH

• Quasi-normal  modes  produced  during  formation  and  relaxation  of  a  remnant  BH: 
superposition of the exponentially damped eigen modes of a BH. We attempt to identify the 
n=0 overtone (the longest lived mode) as a function of “post-merger” time 

LVC arXiv:1602.03841



Constraining dispersion in the GW signal
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Conclusion
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• The gravitational wave event GW150914: 
• First detection of gravitational wave signal
• First detection of Black Hole binary system
• First detection of the heaviest stellar-mass black hole

• We have accurate  waveforms (theoretical models )  to reliably detect 
GW signals and estimate their parameters

• The observational bias (selection) prefers BH systems face-on/off, 
which in turn makes it hard to estimate well the spins and their 
orientation

• All consistency checks performed on the GW signal show no 
indication of any deviation from General Relativity and binary Black 
Hole system


