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Физика с Крупномасштабной структурой Вселенной

• Эволюция возмущений плотности материи = плотности числа 
галактик

свойства Темной Материи (Холодная или теплая? пятая сила?)	


Темной Энергии (кластеризация квинтессенции)  
массы нейтрино

• Барионные акустические осцилляции = стандартная линейка 
Вселенной

уравнение состояния Темной Энергии 
массы нейтрино

• Первичная негауссовость

взаимодействие инфлатона в ранней Вселенной



Основные понятияHow to treat galaxies and related objects properly?

� ⌘ �⇢

⇢

local density !
perturbation

average !
density

P (k) = h�(k)2i

k =
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�
2) Wavenumber

1) Density contrast: 

�⇢ ⇠ 10�3g ⇥ cm�3
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� ⇠ k�1
3) Power spectrum
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Large-scale structure

Power spectrum of density contrast �(x, z) = ⇢(x, z)/⇢̄(z) � 1

h�(k, z)�(k0, z)i = �(3)(k + k

0)P(k, z)

SDSS 2003 (Tegmark et al) 0310725 BOSS 1203.6594

DES (2013-18); LSST, Euclid (⇠2020): (sub-)percent at BAO scales

Mathias Garny (CERN) Cosmological perturbation theory at three-loop order
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⇠(r) =

Z
d3kei

~k·~rP (k)

Корреляционная функция

Нелинейности вступают в игру
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FIG. 4: The two-point correlation function for z = 0 (left panel) and z = 0.5 (right panel). The dashed line corresponds to
the linear two-point function, the solid line is the prediction of RPT and the symbols with error bars are the measurements in
numerical simulations, corresponding to 50 realizations comprising a total volume of 105 ( h−1 Gpc)3 approximately.

C. The Two-Point Correlation Function

To calculate the two-point correlation function in RPT
we Fourier transform the RPT power spectrum predic-
tion presented in the previous subsection, although here
we only use the one-loop approximation to the mode-
coupling power, i.e. we transform P ≃ G2 P0 + P 1loop

MC
to real space. The two-loop contribution to PMC is not
included since it only introduces very small corrections
at BAO scales, and performing its Fourier transform re-
quires a very accurate evaluation, which is numerically
costly.

Figure 4 shows the prediction of RPT for the two-point
correlation function (solid line) against the measurements
in N-body simulations (symbols with error bars) and
the linear theory correlation function (dashed line) for
a broad range of scales. The left panel shows z = 0 and
the right panel corresponds to z = 0.5.

The agreement between RPT and N-body measure-
ments for the two-point function is remarkable, although
expected from the results on the power spectrum pre-
sented in Figs. 2 and 3. The different actions of G2 and
ξMC in real space is another way of seeing that the can-
cellation in the power spectrum between G2P0 and PMC

presents a somewhat misleading picture. The action of
these two effects is completely different in the correlation
function, and one clearly sees large (≃ 30%) deviations
from linear theory at 100 h−1 Mpc scales. This is because
measuring the power spectrum at a given scale doesn’t

say how much of it is correlated with the initial con-
ditions and how much is due to mode-coupling, unless
one also measures G, something one cannot do in ob-
servations but it is simple enough to do in simulations
(see [19, 23] and Section IV below). As we demonstrate
in section VC, the mode-coupling power leads in correla-
tion function space to contributions which involve deriva-
tives of the linear correlation function, and when features
are present these terms can become important at large
scales. Similarly, convolution with G2 becomes a signifi-
cant nonlinear effect when the linear correlation function
has features which have a width comparable or smaller
than that of G2 (given by 2σv), which from Eq. (8) is
≃ 13, 8, 4 h−1 Mpc at z = 0, 1, 3. The acoustic signature
satisfies this condition at low redshift.

We postpone discussion of the evolution of the peak of
the two-point function until section VB, where we study
the shift of the acoustic peak as a function of redshift.

IV. RPT AND THE HALO MODEL

Figure 1 and Eqs. (9) and (11) shows that RPT
presents a very similar decomposition to that in the halo
model (see [32] for a review). In this case the density
field is modeled as a collection of halos containing all the
mass

ρ(x) =
∑

i

mi umi
(x − xi), (12)
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FIG. 2: Nonlinear evolution of the acoustic oscillations in the dark matter power spectrum. In all cases we show the nonlinear
power spectrum divided by a smooth spectrum [28] to make the acoustic oscillations more visible. The square symbols with
error bars correspond to measurements in N-body simulations, whereas RPT prediction is represented by a solid red line as
labeled. One-loop Perturbation theory (solid black line), halofit (solid magenta line) and linear theory (dashed blue line) are
also shown. The different panels correspond to z = 0, 0.3, 1, 2 (top left, top right, bottom left and bottom right respectively).
The agreement between the RPT prediction and the N-body measurements is excellent for all redshifts, see Fig. 3 for a more
detailed comparison.

we use 50 realizations of 6403 particles in a cubical box
of side 1280 h−1 Mpc that cover a much larger volume
∼ 105(h−1 Gpc)3 and effectively eliminates this issue.
Based on the smaller set of simulations [14] claim that
the suppression of the nonlinear power spectrum with re-
spect to linear theory is of order 5% at z = 0. Based on
the much larger volume simulations, we see a maximum
suppression of 3.5% at k = 0.07 h Mpc−1 for the same

cosmology.

Figure 3 shows a different normalization than Fig. 2,
this time dividing by the nonlinearly evolved smooth
power spectrum, thus taking out the scale dependence in-
duced by the mode-coupling power. This allows us to re-
duce the vertical scale of the plots and appreciate in more
detail the comparison between RPT and simulations. We
show linear theory (short-dashed line) and the different

Спектр мощности

Non-linearities smear the peak"

Broadening of feature due 
to Gaussian smoothing and 
~0.5% shift due to mode 
coupling. 

Loss of contrast and 
excess power from 
non-linear collapse. 

(c) White

h�(k)�(k0)i = �(3)D (k0 + k)P (k)

(c) Scoccimarro

⇠(r) = h�(x)�(x+ r)i



Как моделировать нелинейности - ?

Развить аналитический инструмент   
чтобы сверять теорию	


с данными быстро 

1) Много времени, 	


2) Дорого,  
3) Трудно приспосабливать под  
расширения

N - точечные симуляции



Крупномасштабная структура Вселенной: теория
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Переход в Фурье - пространство
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Стандартная теория возмущений (SPT)

• Инфракрасные расходимости,  
которые сокращаются

Трудно анализировать  
физические ИК эффекты

4

to the bulk motions, ⇠̃g has a broader peak with ⌃2
⇤ given

by

⌃2
⇤ ⇡ 1

6⇡2

Z ⇤

0

dqPlin(q)[1�j0(q`BAO)+2j2(q`BAO)], (15)

where jn is the n

th order spherical Bessel function.
It is easy to perturbatively confirm the above result

when ⇠g is taken to be the dark matter correlation: The
leading contribution of the long wavelength modes to the
one-loop power spectrum of the peak reads5

P

w
1�loop(k > ⇤) =

1

2

Z ⇤ d3q

(2⇡)3
(q · k)2

q

4
Plin(q)

[Pw
lin(|k + q|) + P

w
lin(|k � q|)� 2Pw

lin(k)] .

(17)

For q ⌧ k the expression in the square brackets simplifies
to �4Pw

lin(k) sin
2(q · k̂`BAO/2), giving

P

w
1�loop(k > ⇤) = ⌃2

⇤k
2
P

w
lin(k), (18)

and taking the Fourier transform with respect to k re-
produces (14).

Note that for any k, our approximation is valid for all
q ⌧ k while the above expressions are based on a rigid
separation of scales above and below ⇤. Of course, in
reality P

w
g (k) has support in a large range of momenta,

roughly (0.05�1) hMpc�1. Even if a q-mode falls in this
range, it is still true that its leading e↵ect on higher k

modes is the mere bulk motion. Therefore, it contributes
to the peak power through ⇠g,L, and at the same time,
broadens it by dispersing the shorter modes. A better
estimate of the width can be obtained by including for
each k the broadening e↵ect of all smaller q modes, i.e.
by taking ⇤ to increase with k. Below, we will implement
this idea by taking ⇤ = ✏k, with ✏ ⌧ 1.

Taking ✏ = 1/2, the above expression (18) predicts an
e↵ective broadening of ⌃✏k⇤ ⇡ 5.5h�1Mpc, where k⇤ is
defined by ⌃✏k⇤k⇤ = 1. This turns out to be a sizable
fraction of the actual width of the observed matter cor-
relation function. We compare the theoretical prediction
with the result of an N -body simulation6 in fig. 3. It is

5 The full one-loop power spectrum is given by
Z

d3q

(2⇡)3
[6F3(q,�q,k)Plin(k)+2F 2

2 (q,k�q)Plin(|k�q|)]Plin(q) .

(16)
For q ⌧ k it reduces to (17). Incidentally, this coincides with

1

2

Z

q⌧k

d3q

(2⇡)3
P

�1
lin (q) h�

q

��q

�

k

��k

i ,

as expected from the remark after (13).
6 We are measuring power spectra and correlation functions in a
suite of 16 dark matter only simulations, each of which captures
the evolution of 10243 particles in a box of 15003 h

�3Mpc3. The
matter density parameter is ⌦m = 0.272, the tilt ns = 0.967 and
the normalization �8 = 0.81. The leading cosmic variance has
been divided out, such that the error bars reflect the sub-leading
cosmic variance.
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FIG. 3. The acoustic peak in the matter correlation function

in linear theory (solid), 1-loop perturbation theory (dashed),

and simulation.

seen that the perturbative treatment has completely de-
formed the shape of the peak. A more accurate descrip-
tion should, therefore, treat the relative motions non-
perturbatively.

Infra-red resummation.— We can obtain a formula
which is valid to all orders in the relative displacement
�

q

/q, by rewriting (2) as (see e.g. [8])

D
�g(

x

2
, t)�g(�x

2
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h�g(k, t)�g(�k, t)i .

(19)

As before, this is only relevant in the presence of a fea-
ture. Taking the expectation value over the realizations
of the q modes, approximating them, as we did so far, as
being Gaussian, and using hexp(i')i = exp(� ⌦

'

2
↵
/2)

for Gaussian variables, we obtain our final expression
for the dressed two-point correlation function around
r ⇡ `BAO

⇠̃g(x) '
Z

d3k

(2⇡)3
e

ik·x
e

�⌃2
✏kk

2 h�g(k, t)�g(�k, t)i✏ . (20)

To write the exponent in the above form, we have used
the fact that r2 ⇡ @

2
r [and therefore k

2 ⇡ (x̂ · k)2] up to
corrections of order �/`BAO. In principle, the exponen-
tial factor should only multiply the peak power P

w
g (k),

though in practice the smooth background at r ⇡ `BAO is
insensitive to the presence of this factor since ⌃ ⌧ `BAO.
The subscript ✏ on the momentum space expectation
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нелокальность по времени!



Стандартная теория возмущений (SPT)
• Приближение одиночных потоков 
не работает на малых масштабах

Неправильное описание  
мелкомасштаюной динамики
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k,
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M
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)-3
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Figure 1: One, two and three-loop contributions to the equal-time power spectrum
obtained from a numerical Monte Carlo integration within standard perturbation
theory at z = 0. The linear power spectrum is obtained from the initial power
spectrum from CAMB [21] using the ΛCDM model with WMAP5 parameters.
For the three-loop order, the error bars show an estimate for the numerical error
obtained by multiplying the error output of the CUBA routine Suave by a factor
of two. The relative error is ≤ 0.002 for k ≤ 0.55h/Mpc. The black diamonds
and grey crosses correspond to two different parametrizations of the absolute loop
momenta (see App. A).

We comment on a possible way of achieving this through a resummation of
the different contributions below.

Another observation is that for z = 0 the sum of loop corrections up to
three loops becomes larger than the linear power spectrum for k ! 0.16 h/Mpc.
Since the former is negative, SPT clearly does not converge neither on these
scales. For even larger momentum k, one observes that each loop contri-
bution features the expected behavior (3.2) with a logarithmic enhancement
compared to the linear spectrum. But also in this regime, the loop expansion
appears to be divergent.

The picture might change if one goes to larger redshift z, where the
expansion parameter can be efficiently suppressed since σ2

l ∝ D+(z)2 ∼ (1 +
z)−2. In Figs. 2 and 3 we show some comparisons between our three-loop

11
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Теория возмущений на временных расслоениях (TSPT)
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Figure 1. Example of TSPT Feynman diagrams.

It is instructive to consider the tree-level expressions for the 3- and 4-point correlators.

Using the diagrams depicted in Fig. 1 one obtains,
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approach and their ’role’ is to reproduce eventually the SPT result. In order to further

renormalise the UV - behaviour and account properly for very short modes one has to

introduce new counter-terms for the �
n

vertices. This issue, however, is not the main

goal of this paper and will be addressed in detail elsewhere.

To make the connection with the SPT approach, i.e. to write TSPT as a series in

P

0

, it is very instructive to perform one - loop computation, to which we proceed now.

2.3.1 1-loop results and comparison with SPT

Let us now focus on the 1-loop PS (e.g. including next to leading order corrections

of P
0

). The field  used to be a generic field obeying (4) in the previous sections.

However, in order to switch to the familiar notation of SPT, it will be more convenient

to relabel this field as follows,

 ⌘  
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, (31)

which is validated by the fact the filed  has to be identified with the velocity divergence

field as far as cosmology is concerned. In this subsection we will be studying the power

spectrum of the  
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field,
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In terms of Feynman diagrams, at the order O(P 2

0

) this is given by8 (the combinatorial

factors are included in the diagrams)

P

L

 2 2
(⌘, k) + P

1�loop

 2 2
(⌘, k) =

k

+
k k

C

2

+
k k

q

�
4

+
k

q

k
q� k

�
3

�
3

(33) diagr1loop

The first graph is simply the linear power spectrum. The e↵ect of the second diagram

with C

2

is to cancel spurious UV divergences (⇠ P

2

0

(k)⇤3

UV

) appearing in the third,

so-called ’sunrise’ diagram (see (B) for more details). misha:More on UV here?

8Note that one-loop tadpole graphs have been already taken care of, see (30).
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renormalise the UV - behaviour and account properly for very short modes one has to

introduce new counter-terms for the �
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vertices. This issue, however, is not the main

goal of this paper and will be addressed in detail elsewhere.

To make the connection with the SPT approach, i.e. to write TSPT as a series in

P
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, it is very instructive to perform one - loop computation, to which we proceed now.

2.3.1 1-loop results and comparison with SPT

Let us now focus on the 1-loop PS (e.g. including next to leading order corrections

of P
0

). The field  used to be a generic field obeying (4) in the previous sections.

However, in order to switch to the familiar notation of SPT, it will be more convenient

to relabel this field as follows,
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The first graph is simply the linear power spectrum. The e↵ect of the second diagram

with C

2

is to cancel spurious UV divergences (⇠ P

2

0

(k)⇤3

UV

) appearing in the third,

so-called ’sunrise’ diagram (see (B) for more details). misha:More on UV here?

8Note that one-loop tadpole graphs have been already taken care of, see (30).
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БАО: метод ифракрасного пересуммирования
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Короткие масштабы: метод ренормгруппы
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Summary   

LSS is emerging as the main observational probe for 
cosmology in the near future

analytic understanding of LSS in the mildly non-linear 
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exploit its potential

Коротние масштабы сильно нелинейны:  
их нужно “отынтегрировать”
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Биспектр: барионные акустические осцилляции12 Slepian et al.

Figure 6. A fit of PT predictions, computed using the physical
power spectrum, to the compressed 3PCF’s multipoles ` = 0� 4

for the CMASS sample. Notice the peaks in l = 0, 1, and 4 around
the BAO scale of r

1

= 100 Mpc/h. In particular compare the ` =
1 panel here with that of Figure 4 to aid in identifying the peak
and trough the BAO induce in the 3PCF’s dipole moment. The
points in the peak are anti-correlated with those in the trough,
as shown in Figure 2 (second tile on the diagonal). These points
are therefore more constraining than the error bars shown would
suggest. The error bars plotted are the diagonal of the covariance
matrix, and the �2/d.o.f. = 107.64/107.

Figure 7. Same as Figure 6 but now for multipoles ` = 5 � 9.
These higher multipoles appear noisier than their lower-` coun-
terparts, as indicated by the larger number of points more than
1� distant from the model. While the error bars are similar in
magnitude to those in Figure 6, the signal is reduced relative to
the largest in Figure 6 (i.e. ` = 2 and 3).

Figure 8. The probability contours for the redshift-space biases
b
1

and b
2

having marginalized over the integral constraint. The
red ellipse contains 68% of the probability and the light blue 95%.
One can see that our measurement obtains a good constraint on
b
1

but has very little constraining power on b
2

, a conclusion borne
out quantitatively by the large error bar on b

2

relative to that on
b
1

quoted in Table 1.

b
1

b
2

c
��2 no BAO

vs. BAO
MultiDark-
Patchy mocks

2.390
±0.003

0.32
±0.04

0.0000
±0.0006

3234.34

CMASS SDSS
DR12 sample

2.23
±0.06

0.3
±0.7

�0.023
±0.007

7.58

Table 1. Table of best-fit parameters for MultiDark-Patchy
mocks and CMASS data. The biases are redshift-space quantities,
and c encodes the integral constraint (§5.3). The last column de-
scribes the �2 penalty a no-BAO model (§7.2) pays over a model
with BAO.

8 CONCLUSIONS

We have measured the large-scale 3PCF of the SDSS DR12
CMASS sample of 777,202 LRGs. The novel multipole algo-
rithm of SE15b permits us for the first time to take advan-
tage of all triangle configurations. We have used a compres-
sion scheme first developed in SE15a to reduce the dimen-
sion of the full 3PCF multipole coefficients and to avoid the
triangles for which PT is likely invalid. We have shown that
in this basis the analytic covariance matrix of SE15b, which
assumes a Gaussian Random Field density and a boundary-
free survey, is a good match to the empirical covariance ma-
trix derived from 299 MultiDark-Patchy mock catalogs.
Using our analytic covariance matrix with volume and shot
noise derived from the mocks, we have fit for the redshift-
space linear and non-linear bias as well as a constant to
marginalize over possible failure to satisfy the integral con-
straint. We measure the redshift-space linear bias with 2.6%
precision. We also find a 2.8� preference for the BAO
in the data by comparing a physical model with BAO to
the Eisenstein & Hu (1998) “no-wiggle” model.

The present work uses the largest number of galaxies to

c� 0000 RAS, MNRAS 000, 000–000

Slephian et al.’15
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Навстречу новой физике: массы нейтрино

6.1 Linear matter power spectrum 295
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Figure 6.4 Matter power spectrum at redshift zero for a !CDM model with three
degenerate massive neutrino species (mν = 0.3 eV), compared to the individual
power spectrum of CDM, baryon and neutrino density perturbations. In this model
knr is equal to 5.1 × 10−3h/Mpc (see Eq. (5.94)). For wavenumbers k > knr, neu-
trino perturbations remain smaller than CDM and baryon perturbations, because
of their low growth rate after the nonrelativistic transition.

same #M and primordial power spectrum). Indeed, before the Hubble radius
is crossed, all perturbations are subject to the usual universal relations given
by Eq. (5.24) for adiabatic initial conditions. After Hubble crossing, if k < knr,
neutrino free-streaming can be neglected: massive neutrinos share the same evo-
lution as CDM and fall into the same potential wells, with δν quickly reaching the
asymptotic value of Eq. (6.57). Hence all quantitites evolve exactly as described
in Section 5.24, with neutrinos being counted as part of the cold dark matter
component. Because the matter power spectrum depends only on #M and PR(k)
for wavenumbers k < keq, and because knr < keq, two models with different
neutrino masses but the same total matter fraction and primordial spectrum are
indistinguishable on those scales.! for k ≫ knr, we can use the fact that at low redshift and for the cosmological
scales of interest in this book, |δν | ≪ |δC| = |δB|. If we expand the total matter
fluctuation as

δM = fCδC + fBδB + fνδν (6.58)
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m⌫ = 0.3 eV ⇠ (m⌫/T⌫)
1/2

at least 
5% effect

Audren et al. 2013

Mass of neutrinos

Beating CMB (more modes) aim: predictions/observ below 1%
To keep in mind

Weak lensing scales are not so far away…

There is hope close to the linear regime!



Навстречу новой физике: массы нейтрино
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Навстречу новой физике: первичная негауссовость

2

to some arbitrarily chosen scale kNL. Theoretical errors
e↵ectively restrict the range of useful modes to those for
which the signal dominates over the theoretical uncer-
tainty. In this way the realistic kmax can be surprisingly
lower than kNL and this reduction of the number modes
leads to bigger uncertainties on inferred parameters.

We will describe in detail how to consistently calculate
the Fisher matrix including the theoretical uncertainties.
We will apply this general framework to measurements
of the sum of neutrino masses and primordial NG (for
a similar earlier study for the case of neutrino mass see
[11]). Obtaining realistic and very precise forecasts, par-
ticularly for very high redshift surveys, is beyond the
scope of this paper. Our primary goal is to study the
e↵ect of theoretical uncertainties on the amount of use-
ful information in a given volume. We will therefore use
simple analytical models whenever possible and assume
ideal surveys. In this sense our final results are opti-
mistic, but nevertheless give a very good estimate of how
much theoretical errors degrade the constraints.

Before moving to the more systematic treatment, in
the rest of this section we motivate the basic idea in the
example of equilateral NG.

A. Example of Equilateral NG

Primordial NG are important observables because they
contain information about the very early phases of cos-
mic evolution. The current upper bounds on the most
interesting equilateral and local shapes are [12]

f loc.
NL = 0.8± 5.0 , f eq.

NL = �4± 43 , (68% CL) . (1)

Even though these upper limits are quite strong, a theo-
retically interesting threshold is fNL ⇠ 1. Any detection
of non-zero NG would be very exciting, but even the ob-
servation that both f loc.

NL and f eq.
NL are smaller than one

would be very informative. It would favor single-field and
slow-roll inflation and practically rule out a large class of
inflationary models with modified kinetic term or more
than one light field during inflation. Although futuris-
tic experiments including polarization have a potential
to improve the current constraints almost by a factor of
2 (see for example [13]), it will be hard to reach fNL ⇠ 1
from the CMB alone.

The other way to detect primordial NG is through its
imprint on the bispectrum of density fluctuations in the
late universe. The full bispectrum B(k1,k2,k3) of the
density contrast � is a sum of the primordial part and
the one generated by the gravitational interactions. For
simplicity, let us focus on redshift z = 0 and assume that
all momenta in the bispectrum are of the same magnitude
k. The primordial contribution is approximately

Beq.(k) ⇠ P 2(k) · f eq.
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where T (k) is the transfer function, H0 the present day
value of the Hubble constant, ⌦m the matter density pa-

rameter and D+(z) the perturbation growth factor. The
gravitational part can be calculated using perturbation
theory. If one calculates the bispectrum including (l� 1)
loops, the result can be schematically written as

Bgrav.(k) ⇠ P 2(k) [“(l � 1)�loop” + E(l, k)] , (3)

where the second term is the theoretical error. As we
discussed, the typical size of this error is E(l, k) =
O((k/kNL)(3+n)l). Notice that for the leading tree-level
bispectrum the first term in square brackets is O(1).
From the previous expressions it is clear that while the

theoretical error grows, the primordial part decays with
k. We are interested in the scale kmax for which they
become comparable. This scale sets the range of modes
that we are allowed to use in the analysis:
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For example, if we calculate the 1-loop bispectrum (cor-
responding to l = 2 for the error), for a target of f eq.

NL ⇠ 1
it turns out that kmax = 0.03 hMpc�1. This is quite
smaller than the naive cuto↵ kNL and deep in the per-
turbative regime. On second thought, this result should
not be so surprising. For the given kmax and f eq.

NL ⇠ 1 the
relative size of primordial part is

f eq.
NL

9H2
0⌦m

k2maxT (kmax)D+(0)
⇠ O(10�3) , (5)

which should be compared with the O(1) gravitational
contribution in Eq. (3). To get this precision on the
gravitational bispectrum one has to stay far away from
the nonlinear scale. This precision is an order of mag-
nitude smaller than the usual theoretical target, which
is O(1%). This is true for perturbation theory as well
as for simulations. In order to be useful for detection
of small equilateral NG, the theoretical models have to
significantly improve.
So far we were just comparing primordial and grav-

itational signal to estimate kmax. It is interesting to
ask whether f eq.

NL ⇠ 1 is even achievable with kmax =
0.03 h/Mpc�1 and what kind of survey volume is needed.
To find the answer we have to calculate the signal-to-
noise, which is given by
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where A = 2.215 · 10�9 is the normalization of the power
spectrum. This can be rewritten as �(f eq.

NL) ⇠ 2·104/pN ,
where N = (kmax/kmin)3 is the number of modes. With
NG of order unity we naively get kmin ⇠ 10�3kmax which,
for the above estimate of kmax, corresponds to unobserv-
able super-horizon scales.
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Figure 5: The shapes of the tree-level and one-loop bispectrum divided by ⌃
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are plotted
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the reduced bispectrum Q (see Ref. [1]). Q is defined as the ratio of the bispectrum and
the product of two power spectra (more precisely, the sum over permutations thereof). We
choose to divide the bispectrum only by the combination ⌃

0

made of linear power spectra

⌃
0

⌘ Plin(k1

)Plin(k2

) + 2 cycl. perm. (2.31)

as opposed to Q where the full power spectra are considered. Following Ref. [28], we can
then plot this quantity as a function of the two variables x
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2.3 UV-limit of the loop integrals

In the context of the EFTofLSS we are particularly interested in the UV-limit of the loop
integrals. Therefore, we will have a closer look at this regime before discussing in detail the
EFT contributions to the bispectrum. When the loop momentum becomes much larger
than the external momenta, we can expand the kernels according to the scaling laws in
Eq. (2.19). The resulting expressions give us a hint of how the contributions from the
e↵ective stress tensor should look like in order to cancel the possible divergences.

Let us first consider the UV-limit of the one-loop power spectrum (see also Ref. [6]).
Looking at the diagrams in Fig. 2, we can imagine that the momentum that runs inside
the loop becomes much larger than the external momentum. Since the vertices scale as
/ k

2

/q

2 in this limit (see Eq. (2.19)), we conclude that the two diagrams behave as P

22

/ k

4

and P

13

/ k

2. Including the correct numerical factors, in the UV-limit the two one-loop
integrals in Eq. (2.24) take the form

– 14 –

⌃0 = P (k1)P (k2) + cycle

Btree(k1,k2,k3) = 2F2(k1,k2)P (k1)P (k2) + cycle

Первичная негауссовость!
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FIG. 4: The two-point correlation function for z = 0 (left panel) and z = 0.5 (right panel). The dashed line corresponds to
the linear two-point function, the solid line is the prediction of RPT and the symbols with error bars are the measurements in
numerical simulations, corresponding to 50 realizations comprising a total volume of 105 ( h−1 Gpc)3 approximately.

C. The Two-Point Correlation Function

To calculate the two-point correlation function in RPT
we Fourier transform the RPT power spectrum predic-
tion presented in the previous subsection, although here
we only use the one-loop approximation to the mode-
coupling power, i.e. we transform P ≃ G2 P0 + P 1loop

MC
to real space. The two-loop contribution to PMC is not
included since it only introduces very small corrections
at BAO scales, and performing its Fourier transform re-
quires a very accurate evaluation, which is numerically
costly.

Figure 4 shows the prediction of RPT for the two-point
correlation function (solid line) against the measurements
in N-body simulations (symbols with error bars) and
the linear theory correlation function (dashed line) for
a broad range of scales. The left panel shows z = 0 and
the right panel corresponds to z = 0.5.

The agreement between RPT and N-body measure-
ments for the two-point function is remarkable, although
expected from the results on the power spectrum pre-
sented in Figs. 2 and 3. The different actions of G2 and
ξMC in real space is another way of seeing that the can-
cellation in the power spectrum between G2P0 and PMC

presents a somewhat misleading picture. The action of
these two effects is completely different in the correlation
function, and one clearly sees large (≃ 30%) deviations
from linear theory at 100 h−1 Mpc scales. This is because
measuring the power spectrum at a given scale doesn’t

say how much of it is correlated with the initial con-
ditions and how much is due to mode-coupling, unless
one also measures G, something one cannot do in ob-
servations but it is simple enough to do in simulations
(see [19, 23] and Section IV below). As we demonstrate
in section VC, the mode-coupling power leads in correla-
tion function space to contributions which involve deriva-
tives of the linear correlation function, and when features
are present these terms can become important at large
scales. Similarly, convolution with G2 becomes a signifi-
cant nonlinear effect when the linear correlation function
has features which have a width comparable or smaller
than that of G2 (given by 2σv), which from Eq. (8) is
≃ 13, 8, 4 h−1 Mpc at z = 0, 1, 3. The acoustic signature
satisfies this condition at low redshift.

We postpone discussion of the evolution of the peak of
the two-point function until section VB, where we study
the shift of the acoustic peak as a function of redshift.

IV. RPT AND THE HALO MODEL

Figure 1 and Eqs. (9) and (11) shows that RPT
presents a very similar decomposition to that in the halo
model (see [32] for a review). In this case the density
field is modeled as a collection of halos containing all the
mass

ρ(x) =
∑

i

mi umi
(x − xi), (12)

6

FIG. 2: Nonlinear evolution of the acoustic oscillations in the dark matter power spectrum. In all cases we show the nonlinear
power spectrum divided by a smooth spectrum [28] to make the acoustic oscillations more visible. The square symbols with
error bars correspond to measurements in N-body simulations, whereas RPT prediction is represented by a solid red line as
labeled. One-loop Perturbation theory (solid black line), halofit (solid magenta line) and linear theory (dashed blue line) are
also shown. The different panels correspond to z = 0, 0.3, 1, 2 (top left, top right, bottom left and bottom right respectively).
The agreement between the RPT prediction and the N-body measurements is excellent for all redshifts, see Fig. 3 for a more
detailed comparison.

we use 50 realizations of 6403 particles in a cubical box
of side 1280 h−1 Mpc that cover a much larger volume
∼ 105(h−1 Gpc)3 and effectively eliminates this issue.
Based on the smaller set of simulations [14] claim that
the suppression of the nonlinear power spectrum with re-
spect to linear theory is of order 5% at z = 0. Based on
the much larger volume simulations, we see a maximum
suppression of 3.5% at k = 0.07 h Mpc−1 for the same

cosmology.

Figure 3 shows a different normalization than Fig. 2,
this time dividing by the nonlinearly evolved smooth
power spectrum, thus taking out the scale dependence in-
duced by the mode-coupling power. This allows us to re-
duce the vertical scale of the plots and appreciate in more
detail the comparison between RPT and simulations. We
show linear theory (short-dashed line) and the different

BAO in the galaxy correlation function
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