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Motivation. Ultraluminous X-ray pulsars
Accreting magnetar M82 X-2 3
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Figure 1. Chandra images of M82 galaxy’s centre during observations performed on September 20, 1999 (MJD 51441.47) when M82
X-2 was in a low-luminosity state (left) and August 17, 2005 (MJD 53599.04) when it was in a high-luminosity state (right). Circles
indicate the positions of M82 X-1 and X-2 ultra-luminous X-ray sources.

the spectral shape of M82 X-2 to be typical to that of
X-ray pulsars (power law modified by a high-energy cut-
o� at � 15 keV with folding energy � 15 keV; see, e.g.,
Filippova et al. 2005), resulting in a bolometric correction
factor of 2. This factor is consistent with the broadband
spectrum of the pulsed emission from M82 X-2 as seen by
NuSTAR (Brightman et al. 2015).

The light curve of M82 X-2 as observed by Chan-
dra is shown in Fig. 2(a). The histogram of the luminosi-
ties shown in Fig. 2(b) clearly demonstrates a bimodality,
with two well defined peaks at � 1.0 � 1040 erg s�1 and
� 2.8 � 1038 ergs�1.2 We stress here, that in the majority
of low-luminosity states the source is still presented in the
Chandra images. This can be illustrated by Fig. 1, where
the maps of the central part of the galaxy M82 are shown
in both “high” and “low” states.

3 DISCUSSION

3.1 “Propeller” e�ect

The remarkable behaviour of M82 X-2 showing dramatic
switches in luminosity by a factor of 40 can be inter-
preted as the onset of the so-called “propeller e�ect”
(Illarionov & Sunyaev 1975). This e�ect is caused by a sub-
stantial centrifugal barrier which have to be broken by the
infalling matter during the accretion onto the rotating neu-
tron star with strong magnetic field. At the magnetospheric
radius where the magnetic pressure equals the ram pressure
of the infalling material, the accreting matter from a disc or
a wind is “frozen” into the stellar magnetic field lines and
rotates rigidly with the angular velocity of the star. The
matter will fall onto the neutron star only if the velocity of
the magnetic field lines at the magnetospheric radius is lower

2 The over-all bimodal flux distribution is confirmed by Fig. 3
from Brightman et al. (2015). The only flux measurement there
fallen between the two states is the Chandra observation 10545
(MJD 55405), where the PSF of M82 X-2 is clearly blended with
a nearby source, and hence is missing in our list of observations.

than the local Keplerian velocity. Otherwise, the matter will
be stopped at the radius of magnetosphere or even expelled
from the system. Given the fact that magnetospheric radius
depends only on the mass accretion rate and the strength
of the magnetic field, the latter can be directly estimated if
the propeller regime is observed in an accreting magnetized
neutron star.

The threshold value of accretion luminosity Llim(R) for
the onset of the propeller can be estimated by equating the
co-rotation radius (where a Keplerian orbit co-rotates with
the neutron star)

Rc =

�
GMP 2

4�2

�1/3

(1)

to the magnetospheric radius

Rm = kṀ�2/7µ4/7(2GM)�1/7. (2)

Here M is the neutron star mass, P its rotational period, µ =
BR3/2 is the magnetic dipole moment related to the surface
polar dipole magnetic field strength B and the neutron star
radius R, and Ṁ is the mass accretion rate onto the neutron
star. The dimensionless factor k relates the magnetospheric
radius to the Alfvén radius computed for spherical accretion;
for disc accretion it is usually taken k = 0.5 (Ghosh & Lamb
1978). At the limiting accretion rate Ṁ = Ṁlim, Rc = Rm,
and the accretion luminosity is (Campana et al. 2002)

Llim(R) � GMṀlim

R
� 4�1037k7/2B2

12P
�7/3M�2/3

1.4 R5
6 erg s�1,

(3)
where M1.4 is the neutron star mass in units of 1.4M�, R6 is
neutron star radius in units of 106 cm, B12 is the magnetic
field strength in units of 1012 G.

The decrease of the accretion rate below Ṁlim will lead
to the propeller regime of accretion. The accretion e�ciency
drops significantly and the luminosity in that regime cor-
responds to the accretion onto the magnetosphere with the
maximum value of (Corbet 1996)

Llim(Rc) =
GMṀlim

Rc
= Llim(R)

R
Rc

. (4)

Thus if the pulsar is close to the spin-equilibrium, when
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(Tsygankov et al., 2015)
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M82 X2: Magnetic field

I Standard magnetic field B ⇠ 1012G:
I

Bachetti et al., 2014

I
Lyutikov, 2014

I Low magnetic field B ⇠ 109G:
I

Kluzniak and Lasota, 2015

I High magnetic field B & 1014G:
I

Tsygankov et al., 2015



Irradiation from the column. Possible effects

I Pressure gradient is important
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Magnetospheric accretion: Theory

Magnetically-threaded disk:

Models

Magnetically-threaded disk:

I Ghosh and Lamb, 1979

I ⇠ ⇠ 0.5 � 1
Ghosh and Lamb 1979, Wang
1987, Kluzniak and Rappaport
2007

Narrow boundary layerAccretion-powered Stellar Winds 3

change in potential energy (1 � R⇤/Rt) and the change
in kinetic energy (0.5R⇤/Rt) of accreting material, minus
the work done on the stellar rotation [f(Rt/R⇤)1/2]. It
is La that is deposited near stellar surface by accretion,
and thus La powers energetic accretion phenomena, such
as excess luminosity (Königl 1991) and a stellar wind.

We suggest that there are a number of possible ways in
which some of this energy will transfer to the open field
region of the stellar corona. Accretion shocks (Königl
1991; Kastner et al. 2002), and possibly magnetic recon-
nection events (Hayashi et al. 1996), give rise to X-rays
and UV excesses, which radiate the stellar surface. Shock
heated gas may di�use or mix across closed field regions
and into the stellar wind region, and thermal conduction
may be significant. Time-dependent accretion events will
excite magnetosonic waves that may propagate through-
out the corona and deposit energy through wave dissi-
pation. In general, these processes increase the thermal
energy in the corona, and the details are not necessary
for the estimate that follows.

An MHD wind can be powered by both the rotational
kinetic energy of the star and by coronal thermal energy
(Washimi & Shibata 1993). We propose that the thermal
component is powered by some fraction � of the accretion
power, La. The thermal power in the wind is approxi-
mately Ṁwv2

s (� � 1)�1, where vs is the sound speed near
the stellar surface and � is the polytropic index (i.e.,
P / ⇢�). Setting this equal to �La, gives

Ṁw/Ṁa = ���1
th [1 � 0.5R⇤/Rt � f(Rt/R⇤)

1/2] (5)

where �th � 2(vs/vesc)2(� � 1)�1 relates the thermal en-
ergy to the gravitational potential energy. In reality, the
parameter �th is not independent of �, since the mecha-
nism(s) by which accretion energy powers the wind influ-
ences the gas temperature (and thus vs), and the location
and rate of energy deposition influences the e�ective �.

This formulation of the problem is advantageous, as it
is valid for wind temperatures ranging from hot, in which
thermal pressure dominates the wind dynamics, to cold,
in which magneto-centrifugal e�ects dominate (i.e., fast
magnetic rotator winds). The energy equation (5) can be
combined with the torque equation (3) to solve for feq

and Ṁw/Ṁa, simultaneously, for any given coupling ef-
ficiency � and thermal energy parameter �th. Assuming
� = 5/3, the observed X-ray temperatures and the obser-
vations of Dupree et al. (2005) suggest that the value of
�th for CTTS’s is likely to be in the range 0.3–3. Adopt-
ing the fiducial values of equation (3), this likely range
of �th requires a power coupling e�ciency in the range
4% � � � 40%, to achieve the ratio of stellar mass loss
rate to disk accretion rate of Ṁw/Ṁa � 0.1 and an equi-
librium spin feq � 0.09. This value of � appears reason-
able and should help to discriminate between di�erent
possible energy transfer mechanisms.

4. SYNTHESIS

Figure 1 illustrates our proposed scenario for the
dynamics and angular momentum evolution of the
combined star-disk system. This is a synthe-
sis of many results from the literature on disk
winds (e.g., Ouyed & Pudritz 1997), stellar winds
(e.g., Matt & Balick 2004), funnel flow accretion (e.g.,
Romanova et al. 2002), and the general star-disk inter-
action. In the figure, the stellar dipole magnetic field
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Fig. 1.— Schematic of the star-disk interaction. The inner edge
of the accretion disk, located at Rt, is connected to the stellar
magnetic field (solid lines), which regulates the transfer of matter,
energy, and angular momentum to the star (black circle). Ar-
rows indicate the direction of both matter and angular momentum
flow. The dashed and dash-dotted lines indicate the location of the
Alfvén surfaces in the stellar and disk winds, respectively.

connects only to a small portion of the disk inner edge, as
in “state 1” of Matt & Pudritz (2005). From there, disk
material is channeled by the magnetic “funnel” to the
polar region of the star, depositing mass, energy, and an-
gular momentum. The star is rotating su�ciently slowly
that the corotation radius, Rco � f�2/3R⇤, is outside
the connected region, and the star feels only a spin-up
torque from its interaction with the disk. At the same
time, there is a powerful wind along the open stellar field.
The stellar wind Alfvén surface (dashed line) is near 15
R⇤ at mid latitudes, and crosses the pole at a much larger
spherical radius, giving an e�ective cylindrical lever arm
length, rA, of approximately 15 R⇤.

With an estimate of rA, it is possible to consider the in-
fluence of rotation on the wind, since magneto-centrifugal
e�ects begin to be important when rA is greater than
Rco. Sakurai (1985) showed (see his fig. 2) that, for
vs/vesc equal to the solar wind value, centrifugal acceler-
ation is of equal importance with thermal driving when
rA/Rco ⇠ 1001/3. For a star rotating at 10% of breakup,
this means that equality of thermal and centrifugal ef-
fects occurs when rA/R⇤ ⇠ 22. The logical conclusion is
that centrifugal e�ects will be at least marginally im-
portant in CTTS winds when Ṁw ⇠ 10�9M� yr�1,
and may dominate for much lower values of Ṁw (since
rA is then larger) or faster rotation rates. Even with
marginal centrifugal e�ects, these winds should be self-
collimated, and most wind parameters (e.g., rA) depend
on �⇤ (Washimi & Shibata 1993; Matt & Balick 2004).
Furthermore, at large distances from any magnetic rota-
tor, wind material possesses angular momentum equiva-
lent to an amount as if the wind were corotating at rA
(e.g., Michel 1969). Thus, CTTS winds should rotate at a
speed comparable to that of a disk wind (Bacciotti et al.
2002; Anderson et al. 2003) at observationally resolved
distances from the star.

Matt and Pudritz 2005,
Scharlemann 1978, Anzer and
Boerner 1980



Magnetospheric accretion: Simulations
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anomalous resistivity connected with the supposed fast re- 
connection of the toroidal component of the magnetic field 
lines across the disc. 

Here, we propose an essentially different picture for disc 
accretion on to a star with an aligned dipole magnetic field. 
The idea is based on the fact that when there is a large 
difference between the angular velocity of the star and that of 
the disc, the magnetic field lines threading the star and the 
disc undergo a rapid inflation so that the field becomes open 
with separate regions of field lines extending outward from 
both the star and the disc. As a result, the magnetosphere 
consists of an open field line region far from the star and a 
closed region approximately corotating close to the star. This 
is shown schematically in Fig. 3. Our model does not assume 
an anomalous resistivity, but rather a turbulent magnetic 
diffusivity of the disc comparable to the turbulent a viscosity 
proposed by Shakura (1973). This corresponds to a resist- 
ivity about 104 times smaller than that assumed by GL. 
Campbell (1992) has earlier discussed closed field line 
models of disc accretion on to an aligned dipole star, 
assuming a magnetic diffusivity comparable to the turbulent 
«viscosity. 

Here, we study the matter flow in the disc taking into 
account the open magnetic field line region of the magneto- 
sphere. The existence of an open magnetic field region of the 
disc leads to the possibility of magnetically driven outflows. 
We analyse the magnetohydrodynamic (MHD) outflows and 
their back influence on the disc using the work on MHD out- 
flows and magnetized discs by Lovelace, Berk & Con- 
topoulos (1991, hereafter LBC), Lovelace, Romanova & 
Contopoulos (1993, hereafter LRC) and Lovelace, 
Romanova & Newman ( 1994, hereafter LRN). 

In Section 2, we discuss the basic equations. In Section 
2.1, we argue that part of the star/disc field configuration is 
open. In Section 2.2, we give the basic equations for a 

Figure 3. A schematic drawing of the magnetic field configuration 
considered in this work. The magnetosphere consists of an inner 
part, where the magnetic field lines are closed, and an outer part, 
where the field lines are open. 

magnetized viscous accretion disc. In Section 2.3, we discuss 
magnetically driven outflows and, in Section 2.4, a necessary 
condition for these outflows. In Section 2.5, we give the main 
results for the case of outflows where, in general, the star 
spins up. In Section 2.6, we discuss the magnetic braking of 
the star by the disc due to field line twisting, which occurs 
when there are no outflows, and show that the star can either 
spin down or spin up, depending on the mass accretion rate 
and the magnetic moment of the star. In Section 3, we discuss 
the conclusions of this work. 

2 THEORY 
The basic equations for an assumed stationary configuration 
of plasma are 

4jt V '{pv ) = 0, V x = — J, V •/? = 0, VxE = 0, c 

/=«e(^ + i; x jg/c), p(v-V)v=-Vp +pg (1) 

+ -/xß + Fvis. 
c 

Here, v is the flow velocity, p is the density, ae is the effective 
electrical conductivity, Fvis is the viscous force density, 
p=pkBTlm is the gas pressure (with /cB the Boltzmann 
constant, m the mean particle mass, and with the radiation 
pressure assumed negligible), and g is the gravitational 
acceleration. Outside the disc, dissipative effects are con- 
sidered to be negligible ( ae — 00, Fvis = 0, etc.). We neglect the 
self-gravity of the disc and relativistic effects, so that 
g= — V<I>g with <ï>f = - GM/(r2 +z2)1/2, where Mis the mass 
of the central star. Equations ( 1 ) are supplemented later by 
an equation for the conservation of energy in the disc. 

A general axisymmetric ZMield can be written as B = Bp + 
where Æp = V x (^W/r) is the poloidal field, is the 

toroidal field, and W is the flux function (see, e.g., Mestel 
1968, or Lovelace et al. 1986). We use a non-rotating 
cylindrical coordinate system, so that Bp = (Bn 0, Bz). Notice 
that ^(r, z) = constant labels a poloidal field line, 
(ßp-V)lI/ = 0, or a flux-surface if the poloidal field line is 
rotated about the z-axis. For the present problem, the Bp 
field can be represented as W = 'F* + ^ with ^ the star’s 
field assumed to be a dipole W* = pr2{r2 +z2)_3/2, and with 
W' due to the non-stellar toroidal currents. 

2.1 Inflation and opening of coronal /¡-field 
Fig. 4 shows a sketch of the poloidal projections of two 
nearby field lines connecting the star and the disc. Because 
0/0/= 0, the E field is electrostatic and the poloidal plane 
line integral of E around the loop, l-*2-+3->4->l, is zero. 
Because the axisymmetry and the fact that E + v x B/c = 0 
outside the disc, the line integrals of E along the two curved 
segments in Fig. 2 vanish separately. That is, the electrostatic 
potential is a constant on any given flux surface (see, e.g., 
Lovelace et al. 1986). The potential difference between the 
points (1,2) on the star’s surface is - ôrl2 E* = o)*ôxlf/c, 
with ÓW = xif{ — x¥2, where we have assumed that the star is 
perfectly conducting [E*= — (v x B)*/c], and a>* is the 
angular rotation rate of the star. Thus we have 
àr34(Er)d= - m*ôxV/c= — (u^rB^r, 0)/c, 
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Lovelace et al. 1995, Parfrey et al. 2016



Our approach (general picture)
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Our approach (neglecting radial extention of the
transition layer)

Rin

open lines

closed lines

accretion disc

NS

magnetosphere boundary

radiation



Boundary conditions
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I Excess angular momentum is
removed by magnetic and radiation
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Scheme of solution
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Disc structure
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Results. Magnetosheric radius ⇠
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Results. The influence of radiation. ⇠(⌘ = 0.1) � ⇠(⌘ = 0)
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Results. ULXs

M82 X2
Without irradiation ⇠ ' 0.7 and B ' 1014G. With irradiation ⇠ ' 0.8
and B ' 7.4 ⇥ 1013G

HHHHH⌘
↵ 0.01 0.05 0.1 0.5 1

0 161 72 51 22 16
0.1 157 62 36 – –
0.2 153 52 10 – –

Table: Magnetic moments µ in units 10

30
G cm

3
for different values of ⌘ and

↵. All the calculations were made for ṁ = 500 (L = 10

40
erg s

�1
) and

ps = 1.37 s, aimed to reproduce the properties of ULX-pulsar M82 X-2.

NGC 7793 P13
Without irradiation ⇠ ' 0.7 and B ' 1.4 ⇥ 1013G. With irradiation
⇠ ' 0.7 and B ' 1.7 ⇥ 1013G



Conclusions
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accretion rate
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Approximations of ⇠
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Approximasions of ⇠

Gas pressure dominated disc:
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Eddington limits

Non-local Eddington limit:
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