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& _A POINT MASS IN GENERAL RELATIVITY.

& Coalescence of binary black holes:

e G. Schafer, Post-Newtonian Methods: Analytic Results on the Binary Problem
in book: Mass and Motion in General Relativity, 167-210 (Springer, 2011);

e L. Blanchet, LRR, 17, 187 (2014);
e T. Damour, P. Jaranowski, G. Schifer, PLB. 513, 147 (2001);

e and others.

e Extremely necessary for describing LIGO’s and Virgo’s discovery!

e At an initial step the black holes are modeled by point-like particles presented
by Dirac’s J-function.

e Then consequent post-Newtonian approximations are used; excellent mathe-
matics, regularization, etc

e The interpretation problems.
e A point-like description as a fundamental problem.

e A necessity of an exact presentation.



& AN EXACT PRESENTATION.

e The Schwarzschild BH as a point particle described by the Dirac ¢ -function!
e REQUIREMENTS:

(i) The true singularity has to be described by the world line r = 0 with the use
of the Dirac /(r)-function.

(ii)) The Schwarzschild solution has to be presented in the asymptotically flat
form with appropriate (Newtonian) fall-off of potentials at spatial infinity.

(iii) To be consistent with a continuous spherically symmetric collapse trajectories
of falling test particles have to achieve the true singularity continuously.

e The point (i) cannot be satisfied in the geometrical presentation of GR. The
same physical reality can be described in various mathematical techniques.
The field-theoretical methods in GR resolves the problems.

e OTHER REQUIREMENTS:

(iv) We require a so-called “n-causality” (property, when the physical light cone
is inside the background light cone) at all the points of the background
spacetime.

(v) We require a finite time for a free test particle in the background spacetime
to achieve the true singularity.



é THE FIELD-THEORETICAL PRESENTATION OF GR.
Lagrangian of the gravity theory:
L= L(g", ") =LY g") + LY (9", ¢7)
& ¢* — a set of tensor densities (matter fields);
& " — Minkowski metric in curvelinear coordinates (background);

& L = L(~+*") - Lagrangian of the background system.

Perturbations, h*” (the fields configuration - dynamic variables):

Vg9 = A+ )

Lagrangian for new, W = V—7h* o4 dynamic variables:

LY = L(y+h, ¢) — "

Variation with respect to h" leas to the field equations:

L
G, = /{(tfw + 1, ) = /itzo,f :

The total energy-momentum tensor:
o _ 2 0L
VG oy

Vit =0.



{»> The works in the field-theoretical formulation in GR:

e S.Deser, GRG, 1, 9 (1970);

e L.P. Grishchuk, A.N. Petrov and A.D. Popova, Commun. Math. Phys., 94,
379 (1984);

e L.P. Grishchuk and A.N. Petrov, ZhETF, 92, 9 (1987);
e A.D. Popova and A.N. Petrov, IJMPA, 3, 2651 (1988);

e A.N. Petrov, S.M. Kopeikin, R.R. Lompay and B. Tekin, “Metric Theories
of Gravity: Perturbations and Conservation Laws” (Germany: De Gruyter,
2017).



é GAUGE TRANSFORMATIONS AND GAUGE INVARIANCE

The same solution to the Einstein equations can be written in another
coordinate chart, say, {2/“}. The corresponding decomposition is

V=G ) = () + B a)). 6)
Then, after the shifting in the frame {2/*} from points with values of the
coordinates 2’ to points with values 2z and after equalizing ~""(x) = " (x),

one gets
—g'g" (x) = V=7 (v (x) + K" (x)). (7)

The interpretation is as follows. They are related to the same solution to the
Einstein equations; for both of these decompositions the same background
presented by the metric v, i1s chosen by different ways. One concludes that the
fields A*" and h'"" describe the same physical reality, only they and connected
by gauge transformations.



> Perturbations connected by gauge transformations.




{ Gauge transformations (symbolic description):

Full (finite) gauge transformations for the dynamical variables:

1 1
A DD R L A T n v (8)
k=1 k=1

Gauge transformations in linear gravity theory on a flat background (Lorenzian
coordonates):

WY = g, = W = R Lap, = B = R O+ 9VE (9)

& Invariance with respect to gauge transformations:

e Lagrangain is gauge-invariant up to a divergence on the background equations.

e THE FIELD-THEORETICAL EQUATIONS ARE GAUGE-INVARIANT ON
THE BACKGROUND EQUATIONS AND ON THEMSELVES.

e The energy-momentum tensor is NOT gauge-invariant:

kit = ktiol + Gy, (0h)



& A point particle in the Newtonian gravity;

e o = m/r — the Newtonian potential for a point mass:
e The Newtonian gravity equation:

Ap = —drp(r) — (10)
e p(7) = md(r) — the the mass density for a point mass.

> The Schwarzschild solution as a field configuration in Minkowski space.

e The Schwarzschild solution:

ds’ = (1 —r,/r)Pdt> — (1 —ry/r) " dr® — 1 (d6” + sin® 0dg”) (11)
e The Einstein equations:
G, =rT,, = T, =777 (not satisfactory). (12)
e The field-theoretical form of the GR equations,
G, =t (13)
e The background Minkowski space:
ds® = dt* — dr® — r* (df” + sin” 0d¢”) . (14)

e The field configuration:
hOO _ _i7 hll _ Ty . (15)
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The energy density of the gravitational field and sources.

e The break in /" and t{?' corresponds to a break in geodesics:
THE REQUIREMENT (iii) IS NOT HOLD!

e The coordinate transformation, like cdt — cdt + f(r)dr applied to physical
metric g,, and a consequent choose of the same background as Minkowski

space

ds* = *dt* — dr* — r* (d6” + sin” 0d¢?) (16)
changes the field configuration — it is interpreted as the gauge transformation.

@& It is necessary to find a more appropriate gauge fixing.
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& The Eddington-Finkelstein gauge fixing:
ALL THE REQUIREMENT ARE SATISFIED!

e The Schwarzschild solution:

ds? — (1 _ @) Edi2 — 2¢ 19 drdt — (1 + 9) dr? — r2d%Q).
T T T

e in Minkowski space: ds? = c2dt*> — dr? — r?d*Q.
e The field configuration:

th:_’ hm:——, hH:—.

e Energy-momentum:
ttOt

o = mcd(r), 11 = —mc(r), thp = —394B mcd(r).

(17)

(18)

(19)



¢ A generalization Of the Eddington-Finkelstein gauge fixing
for the Schwarzschild solution

& Coordinates transformations applied to the Eddington-Finkelstein frame:

cdt — cdt + f(ry/r)dr. (20)

& Construction of field configurations with the background:

ds* = *dt* — dr* — r* (d6” + sin® 6.d¢°) (21)
& Required properties of the related field configurations:

e the true singularity is placed at r = 0 by the J-function
e the field variables (perturbations) are asymptotically flat;

e regularity at the horizon.



& A general gauge fixing

e The Schwarzschild solution:

ds® = (1 — %) dt* — 2 [% + (1 — %) f] cdtdr
O e

e The field configuration:
r r r
WP = L —2lf - (1-22) p,

TT . r
- (=) 1
. r r
1 _ 'y
hf =
e The energy-momentum components:
tl = mc*d(r) — drr,d(r) [2 (f + &f’) +2ff — £ — QEff’}
r r
2
r
+ |:4f/2+(f//_f/Q)&_Zlff/_Fff”( _&):| _Z)
r r/ir
ttlalt — —mc25(r),

s = —tyapmc®o(r); A ...=23.

(22)

(23)
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& RESTRICTIONS FOR f = f(r,/r):

® The requirement (i) is fulfilled - the true singularity is modeled by J-function.

® The requirement (ii) of the Newtonian asymptotic behaviour:
f(rg/r>‘r—>oo ~ (TQ/TYM; o > ]‘/2
@ The requirement (iii) of the continuous geodesics at 0 < r < oo:

|f| < N; smooth and monotonic for arbitrary large positive N
# Additional restrictions for f = f(r,/r):
e The n-causality requirement (iv):

2
Frafr)l, < 25y Tl "

Teg<r<oo —
r g 1—rg/r

@ The requirement (v) of a finite time of achieving the true singularity:

‘f‘r—>0 <N

(27)

(28)

(29)

(30)
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#® A particular gauge fixing f = —-

V‘

e The Schwarzschild solution:

2 2
ds® = ( — E) Adt? — 2%(36&‘ dr — (1 + &> <1 + Tg) dr? — r? (al&2 + sin® qubZ) :

r r r2

e The field configuration:

2 3 2
r T T T r
/ r r: s r2 / r (31)

e The energy-momentum components:

3 2
i = meoe) - me 2 (1457 ) o) - % (1457
r r

1 = —mcd(r),

s = —ivapmci(r); A, B=2,3. (32)



¢ CONTINUOUS COLLAPSE OF A DUST CLOUD

e J.R. Oppenheimer and H. Snyder, Phys. Rev., 56, 455 (1939) -

e The intrinsic and extrinsic solutions has to matched by the noncontradictive

way - it is a problem:

e Y. Kanai, M. Siino and A. Hosoya, Prog. Theor. Phys., 125, 1053 (2011).

® The extrinsic Painlevé-Gullstrand coordinates:

9 5
ds? — (1 _ —m) Adt? — 2y —dredt — dr® — r?dQ?
T T

e The generalized intrinsic Painlevé-Gullstrand coordinates:

4 r? 4
ds® = (1 — §<Tt>2) codt? + g%drcdt —dr® — r?dO?.
C C

e Both of the solutions are matched smoothly automatically!

& Appilication of the field-theoretical tools is not sensible because
the requirement of the point (ii) is not hold.

(33)

(34)



v =x! = const r=x!= const

rec. 1: Collapse of the dust cloud to a point.



¢ An appropriate change of the PG gauge fixing
for a collapsing matter solution

#® Coordinates transformations from the PG-like frame to the EF-like frame:

(rg /)"
T+ (ry/ 7 (%)

& Coordinates transformations from the PG-like frame to a general frame:

cdt — cdt +

ro/r)/?2
cdt — cdt + (1 j—?f//“g;r)l/Q — f('rg/r)) dr = cdt + F(ry/r)dr. (36)

& Construction of field configurations with the background:

ds* = *dt* — dr* — r* (d6” + sin® 6.d¢°) (37)
& Required properties of the related field configurations:

e requirements (i) — (ii¢), (v) are satisfied with the above requirements for f;

e the requirement (iv) are satisfied with the additional permissible restrictions
for F' in the intrinsic region
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