Уравнения состояния вещества нейтронных звёзд в релятивистских моделях адронного вещества с учётом эффектов среды

Константин Маслов

Сотрудничество: Д.Н. Воскресенский (НИЯУ МИФИ) Е.Э. Коломейцев, Д. Блашке, А. Айриян, О. Григорян (ОИЯИ) Н. Ясутакэ (Технологический университет Чибы)

Микросеминар отдела релятивистской астрофизики ГАИШ МГУ 04.02.2020

Актуальность

NICA White Paper Eur. Phys. J. A (2016) 52

Проблема конфайнмента

- Формулировка конфайнмента кварков в рамках КХД отсутствует
 - Требуется построение уравнения состояния (УС) на основе адронного описания
- Множество экспериментальных данных ⇒ верификация методов

Фазовая диаграмма КХД

Барионное вещество – конденсированная среда с сильным взаимодействием

Πлотность числа барионов

 n = (0 − 10) n₀, n₀ ≃ 0.16 fm⁻³
 Tемпература
 T = (0 − 200) M₂B

 Изотопическая асимметрия

 β = (n_p − n_p)/n, 0 ≤ β ≤ 1.

Множество фазовых переходов

Адронные степени свободы:

- ядерная жидкость-газ
- нуклонное спаривание
- бозе-конденсация π, K, ρ –мезонов
- появление гиперонов и Δ–изобар
- Учёт кварковой структуры:
 - восстановление киральной симметрии
 - кварк-адронный фазовый переход
 - цветовая сверхпроводимость
 - возможное существование критической точки КХД – NICA, FAIR

Требуется согласовать в рамках единого подхода

«Гиперонная и Д–загадки» в бета-равновесном веществе

- Легчайшие из странных адронов: $\Lambda^0(1116), \Sigma^{\pm,0}(1193), \Xi^{-,0}(1318)$
- Без учёта их взаимодействия с нуклонной средой не появляются
 - Анализ данных о гиперъядрах:

 $U_{\Lambda} \simeq -28 \,\mathrm{M}\mathfrak{s}\mathrm{B}, \quad U_{\Sigma} \simeq +30 \,\mathrm{M}\mathfrak{s}\mathrm{B}, \quad U_{\Xi} \simeq -15 \,\mathrm{M}\mathfrak{s}\mathrm{B}.$

- \Rightarrow при $n \gtrsim (2-3) n_0$ преобразование части нуклонов в гипероны Λ, Σ, Ξ и Δ -изобары
 - Сильное смягчение УС
 - В стандартных УС масса НЗ падает ниже наблюдаемых значений
 - Потенциал
 $\Delta(1232)$ –изобар плохо определён экспериментально В случае сильного притяжения загадка
 Δ –изобар

Drago et al. PRC 90 (2014)

Возможные решения

- Использование очень жёсткого УС без гиперонов
 - нарушает ограничение на потоки
 - Фазовый переход в кварковое вещество

Требуется очень жёсткое УС кварковой материи **э** проблема реконфайнмента

• В настоящем докладе – учёт изменения свойств адронов в плотной среде

Объёмные свойства атомных ядер

Определяют поведение УС при $n \lesssim 2 n_0$ Энергия на барион при n вблизи n_0 :

$$\begin{split} \mathcal{E} &= \mathcal{E}_0 + \frac{K}{18}\epsilon^2 - \frac{K'}{162}\epsilon^3 + \dots + \\ &+ \beta^2 \left(\mathcal{E}_{\text{sym}} + \frac{L}{3}\epsilon + \dots \right), \\ &\epsilon &= (n - n_0)/n_0 \end{split}$$

Из анализа данных об атомных ядрах:

- $n_0 \simeq 0.16 \, {\rm fm}^{-3}$
- $\mathcal{E}_0 \simeq -16 \text{ M}_{\Im}\text{B}, \ K = (240 \pm 30) \text{ M}_{\Im}\text{B}$
- $\mathcal{E}_{sym} = (30 \pm 2) M \Im B, \ L = (30 70) M \Im B$
- Эффективная масса нуклона: $m_N^*(n_0)/m_N \simeq (0.7 0.8) \, m_N$

Основные ограничения: охлаждение НЗ

Наличие DU-процесса в большинстве H3 противоречило бы наблюдаемому спектру масс H3

Ограничение на наличие прямого Урка-процесса

- «Crporoe»: $M_{\rm DU}^{\rm crit} \ge 1.5 M_{\odot}$
- наиболее вероятная масса из моделирования популяции НЗ
- «Слабое»: $M_{\rm DU}^{\rm crit} \ge 1.35 \, M_{\odot}$
- средняя масса наблюдаемых

пульсаров

Степени свободы

Квантовая теория поля для адронов в качестве элементарных степеней свободы Минимальная связь мезонов с барионами типа Юкавы $\mathcal{L}_{int} = g\sigma \bar{\Psi} \Psi + \dots$ Скалярный мезон $\sigma \leftrightarrow$ притяжение, векторные $\omega, \rho, \phi \leftrightarrow$ отталкивание

Приближение среднего поля

Мезонные степени свободы

- Барионные источники ⇒ ненулевые среднеполевые решения для полей σ, ω, ρ⁰, φ
- Средние $\rho^{\pm} \neq 0$ возникают при $n > n_{\text{crit.}}$ стандартное описание фазовых переходов 1 и 2 рода
- Перенормировки за счёт квантовых флуктуаций – в параметрах взаимодействия
- Аналогия с теорией Гинзбурга-Ландау

Для пионов среднее $\pi = 0$

Барионные степени свободы

Квазичастичное приближение – барионы в самосогласованном среднем поле

- Константы g^* из эксперимента при $n \simeq n_0 \leftrightarrow$ теория ферми-жидкости Ландау-Мигдала
- Позволяет получить зависимость параметров Ландау-Мигдала от плотности

Достоинства метода

Стандартная нелинейная модель Валечки – хорошее описание свойств ядерной материи и структуры атомных ядер на базе РМСП

Изменение масс и констант связи адронов в среде

Массы векторных мезонов

• Масса ω -мезона: $\gamma + A \rightarrow \omega \rightarrow \pi^0 + \gamma$ Сравнение данных для Nb и LH₂

> $\Delta m_{\omega}(0.6 n_0) = 60^{+10}_{-35} \text{ M} \circ \text{B}$ $m_{\omega}^*/m_{\omega} \simeq 1 - 0.14 (n/n_0)$

CBELSA/TAPS Collab. (2005) Уменьшение массы ω

подтверждается экспериментально

• Macca ρ -мезона: In + In $\rightarrow \rho \rightarrow e^+ + e^-$

Данные объясняются как увеличением ширины, так и уменьшением массы

Квазичастичное описание \rightarrow используется снижение массы

Модификация констант связи

Взаимодействие нуклонов в cpede – суммирование лестничных диаграмм

$$a \to G \begin{pmatrix} b \\ d \end{pmatrix} = a \to V \begin{pmatrix} b \\ d \end{pmatrix} + m \to - \begin{pmatrix} b \\ n \end{pmatrix} + \dots$$

Релятивистское обобщение – DBHF (Dirac-Brueckner-Hartree-Fock): скалярная $\Sigma^{n,p}$ и векторные $\Sigma^{n,p}_{\mu}$ собственные энергии \Rightarrow константы связи

$$\begin{split} \frac{g_{\sigma}^{*2}}{m_{\sigma}^{2}} &= \frac{\Sigma^{n} + \Sigma^{p}}{2n_{s}}, \quad \frac{g_{\omega}^{*2}}{m_{\omega}^{2}} = \frac{\Sigma_{0}^{n} + \Sigma_{0}^{p}}{2n}, \\ \frac{g_{\rho}^{*2}}{m_{\rho}^{2}} &= \frac{\Sigma_{0}^{p} - \Sigma_{0}^{n}}{n_{p} - n_{n}} \end{split}$$

Typel Wolter Nucl. Phys. A 656 (1999)

РМСП с зависящими от плотности константами связи – «DD»

- Описывают свойства атомных ядер
- Неплохо описывают НЗ без гиперонов
- Требуют восстановления термодинамической согласованности
- Не учитывают изменение масс мезонов

Обобщение релятивистского метода среднего поля

E. E. Kolomeitsev and D. N. Voskresensky NPA 759 (2005) 373

Учёт изменения масс адронов в среде

Скалярное поле σ – аналогичная роль с киральным конденсатом $\langle \bar{q}q \rangle$ \Rightarrow зависимость масс всех адронов от скалярного поля σ

$$m_N \to m_N^*(\sigma) \equiv m_N \Phi_N(\sigma)$$
$$m_\omega \to m_\omega^*(\sigma) \equiv m_\omega \Phi_\omega(\sigma)$$

Эффективный учёт частичного восстановления киральной симметрии

Учёт изменения констант связи в среде

Зависимость от скалярного поля может быть напрямую включена в эффективный лагранжиан Равновесное решение $\rightarrow \sigma = \sigma(n)$

$$\begin{split} g_{\sigma N} &\to g_{\sigma N}^*(\sigma) \equiv g_{\sigma N} \chi_{\sigma}(\sigma), \\ g_{\omega N} &\to g_{\omega N}^*(\sigma) \equiv g_{\omega N} \chi_{\omega}(\sigma), \end{split}$$

Явная термодинамическая согласованность

УС «KVOR» со скалированными константами связи и массами

Поле $\rho_0^3 \neq 0$ только в веществе H3 – определяет изотопический состав Учёт неодинакового изменения свойств ω – и ρ –мезона в среде – УС KVOR:

- удовлетворяет ограничению на потоки
- описывает высокую пороговую массу M_{DU}^{crit}
- предсказывает максимальную массу НЗ $M_{\rm max}=2.01\,M_\odot...$

• ... без включения гиперонов и Δ -изобар

Требуется дальнейшее расширение и улучшение модели

Обобщение релятивистского метода среднего поля

E. E. Kolomeitsev, D.N. Voskresensky, Nucl.Phys. A 759 (2005)

K. A. M, Kolometsev, Voskesensky, Phys. Lett. B 748 (2015), Nucl.Phys. A961 (2017)

$$\mathcal{L} = \mathcal{L}_{\mathrm{bar}} + \mathcal{L}_{\mathrm{mes}} + \mathcal{L}_l$$

Барионы $\{b\} = (N, \Lambda, \Sigma^{\pm, 0}, \Xi^{-, 0}, \Delta^{-}, \Delta^{0}, \Delta^{+}, \Delta^{++}) \leftarrow$ низколежащие состояния

$$\mathcal{L}_{\text{bar}} = \sum_{i=b\cup r} (\bar{\Psi}_i \left(i D_{\mu}^{(i)} \gamma^{\mu} - m_i \Phi_i(\sigma) \right) \Psi_i,$$

$$D^{(i)}_{\mu} = \partial_{\mu} + ig_{\omega i}\chi_{\omega i}(\sigma)\omega_{\mu} + ig_{\rho i}\chi_{\rho i}(\sigma)\vec{t}\vec{\rho}_{\mu} + ig_{\phi i}\chi_{\phi i}(\sigma)\phi_{\mu},$$

Мезоны $\{m\} = (\sigma, \omega, \rho, \phi)$

$$\mathcal{L}_{\rm mes} = \frac{\partial_{\mu}\sigma\partial^{\mu}\sigma}{2} - \frac{m_{\sigma}^{2}\Phi_{\sigma}^{2}(\sigma)\sigma^{2}}{2} - U(\sigma) + \frac{m_{\omega}^{2}\Phi_{\omega}^{2}(\sigma)\omega_{\mu}\omega^{\mu}}{2} - \frac{\omega_{\mu\nu}\omega^{\mu\nu}}{4} + \frac{m_{\rho}^{2}\Phi_{\rho}^{2}(\sigma)\vec{\rho}_{\mu}\vec{\rho}^{\mu}}{2} - \frac{\rho_{\mu\nu}\rho^{\mu\nu}}{4}, \quad U(\sigma) = b\sigma^{3}/3 + c\sigma^{4}/4$$
$$\omega_{\mu\nu} = \partial_{\nu}\omega_{\mu} - \partial_{\mu}\omega_{\nu}, \quad \vec{\rho}_{\mu\nu} = \partial_{\nu}\vec{\rho}_{\mu} - \partial_{\mu}\vec{\rho}_{\nu}, \quad \phi_{\mu\nu} = \partial_{\nu}\phi_{\mu} - \partial_{\mu}\phi_{\nu}$$

Векторный ϕ -мезон ($\bar{s}s$): дополнительное отталкивание между гиперонами

Лептоны $\{l\} = (e, \mu) \leftarrow$ только в бета-равновесной среде

$$\mathcal{L}_l = \sum_l \bar{\psi}_l (i\partial_\mu \gamma^\mu - m_l) \psi_l.$$

Уравнение состояния

Плотность энергии при T = 0

$$E = \frac{m_N^4 f^2}{2C_{\sigma}^2} \eta_{\sigma}(f) + U(f) + \frac{C_{\omega}^2}{2m_N^2 \eta_{\omega}(f)} \Big(\sum_b x_{\omega b} n_b\Big)^2 + \frac{C_{\rho}^2}{2m_N^2 \eta_{\rho}(f)} \Big(\sum_b x_{\rho b} t_{3b} n_b\Big)^2 + \frac{C_{\rho}^2}{2m_N^2 \eta_{\rho}(f)} \Big(\sum_b x_{\rho} t_{3b} n_b\Big)^2 + \frac{C_{\rho}^2}{2m_N^2 \eta_{\rho}(f)} \Big(\sum_b x_$$

$$+\frac{C_{\omega}^{2}}{2m_{N}^{2}\eta_{\phi}(f)}\frac{m_{\omega}^{2}}{m_{\phi}^{2}}\Big(\sum_{H}x_{\phi H}n_{H}\Big)^{2}+\sum_{b}\int_{0}^{f}\frac{p^{2}\,dp}{\pi^{2}}\sqrt{p^{2}+m_{b}^{2}\Phi_{b}^{2}(f)}+E_{l},$$

$$\mathcal{E}_l = \sum_{l=e,\mu} \int\limits_0^{p_{F,l}} \frac{p^2 dp}{\pi^2} \sqrt{p^2 + m_l^2}, \quad C_i = \frac{g_{iN} m_N}{m_i}, \quad i = \sigma, \omega, \rho, \quad f = \frac{g_{\sigma N} \chi_{\sigma N}(\sigma)}{m_N} \sigma$$

Решаемые уравнения

$$\begin{array}{l} \frac{\partial E}{\partial f} = 0 \;, \; \sum_{\substack{i = b \cup l \\ \text{движения} \\ \text{для } f \\ }} Q_i n_i = 0 \;, \; \underbrace{\mu_b = \mu_n - Q_b \mu_e}_{\text{бета-равновесие}} \\ \text{бета-равновесие} \\ \text{Могут быть разные ветви решений -} \\ \text{возможность фазовых переходов} \end{array}$$

Константы связи барионов с мезонами

 $x_{mb} = g_{mb}/g_{mN} :$

- Симметрии кварковой модели адронов
- Анализ экспериментальных данных о потенциалах барионов в ядрах

Массы мезонов и константы связи

Только в комбинациях C_i и $\eta_m(f) = \frac{\Phi^2(f)}{\chi_m^2(f)}$ В бесконечной среде g_{mb}^* и m_m^* не могут быть определены независимо Значения C_i – из анализа данных об атомных ядрах при $n \simeq n_0$

Предельный случай

$$\Phi_N = 1 - f, \eta_m = 1,$$

 $U(f) = m_N^4 (bf^3/3 + cf^4/4)$
 \Rightarrow стандартная модель Валечки

Модели NLWcut : K.A.M., E.E. Kolomeitsev, D.N. Voskresensky, PRC92 (2015)

 $f \gtrsim f^*$ – резкий рост U(f) приводит к прекращению роста скалярного поля f(n) $f^* \equiv f_0 + \frac{c_\sigma}{(1 - f_0)}$ Причина эффекта

Жёсткость УС

- Уменьшение эффективного притяжения \Rightarrow рост P(n)
- Свойства УС при $n \simeq n_0$ остаются неизменными
- Метод применим к произвольному УС в рамках РМСП

- Влияние адронного «кора» исключённого объёма
- Подавление константы связи g^{*}_{σN} кварк-мезонные модели

Guichon et al. Phys. Rev. Lett. 93 (2004)

• $m_N^* \to \text{const}$ воспроизводится при использовании перенормированной $g^*_{\omega N}$

Paeng et al, Phys.Rev. D88 (2013)

Научная новизна (1)

Предложен новый метод увеличения жёсткости уравнения состояния в релятивистских моделях среднего поля, при плотностях, бо́льших заданного значения $n^* > n_0$, не меняя уравнение состояния при меньших плотностях.

Применение в работах других авторов

Dutra et al. Phys.Rev. C93 (2016) Pais et al. Phys.Rev. C94 (2016) Zhang et al. Phys.Rev. C97 (2018)

Недостатки метода

- Жёсткость увеличивается как в веществе НЗ, так и в ИСМ
- Нужна большая $M_{\rm max}$ с гиперонами \Leftrightarrow нарушение ограничения на потоки
- Не удаётся пройти ограничение на $M_{
 m DU}^{
 m crit}$

Дальнейшее развитие

Учёт изменения свойств векторных мезонов в среде

Увеличение жёсткости УС в векторном канале: свойства *ω*-мезона

K.A.M., E.E. Kolomeitsev, D.N. Voskresensky Nucl.Phys. A 950 (2016)

Семейство УС «KVORcut»

Связь ω со скалярным полем \Rightarrow вклад в эффективный потенциал

$$\Delta E_{\omega} = \frac{C_{\omega}^2 n^2}{2m_N^2 \eta_{\omega}(f)}$$

Предположение о резком снижении $\eta_{\omega}(f)$ при $f \to f^*$ Реализация метода σ -cut

Интерпретация

- резкое снижение m_{ω}^*
- либо резкое увеличение $g^*_{\omega b}$

KVORcut03

Оптимальный выбор – KVORcut03

- Описывает ограничение на потоки
- $M_{\rm max} = 2.17 \, M_{\odot}$ без гиперонов
- Удовлетворяет ограничению на DU, так же, как и KVOR
- Воспроизводит KVOR при $n \stackrel{<}{{}_\sim} 2 n_0$

Увеличение жёсткости в вектор-изовекторном канале: свойства ρ -мезона

Phys.Lett. B 748 (2015), Nucl.Phys. A 950 (2016) MKVOR*: симметричная материя В отличие от KVORcut, предполагается плавное изменение свойств ω -мезона \Rightarrow мягкое УС в ИСМ MKVOR*: вещество H3 Поведение ρ – мезона в среде $(\eta_{\rho}(f))$: • $n \lesssim 2.5 n_0$ – полностью определяется требованием отсутствия DU-процесса • $n \gtrsim 2.5 n_0$ – резкое снижение m_0^* (увеличение g_o^*) \Rightarrow Жёсткое УС в асимметричном вешестве НЗ Результаты • $M_{\rm max} = 2.33 \, M_{\odot}$ без гиперонов • Удовлетворяет ограничению на потоки

K.A.M., E.E. Kolomeitsev, D.N. Voskresensky

• Описывает ограничение на DU

$$\mathcal{E}_{\rm sym}(n) = \frac{1}{2} \frac{\partial^2 \mathcal{E}(n,\beta)}{\partial \beta^2} \Big|_{\beta=0}$$

Включение гиперонов и Δ

Модификация ф-мезона

$H\Delta\phi$:

- скейлинг Брауна-Ро для m_{ϕ}^*
- вакуумные константы связи: $\chi_{\phi} = 1$

Результаты

Фазовый переход 3 рода при $n \simeq (2-3) n_0$

- KVORcut03H $\Delta \phi$: $M_{\rm max} = 1.97 M_{\odot}$
- MKVOR*H $\Delta \phi$: $M_{\rm max} = 2.22 M_{\odot}$

Гиперонная и Д-загадка разрешены

Построены два новых семейства релятивистских моделей с учётом изменения свойств мезонов в среде, различающихся поведением в векторном и изовекторном секторах и удовлетворяющих одновременно широкому массиву экспериментальных ограничений с учетом образования гиперонов и Δ -резонансов в веществе нейтронных звёзд.

Константы связи и параметры Ландау-Мигдала

Не противоречат результатам других подходов

Постановка задачи об охлаждении НЗ

Задача описания охлаждения НЗ

- Три группы: медленное, промежуточное и быстрое охлаждение
- Требуется объяснить имеющиеся данные для $T_s(t)$ в рамках единого сценария
- Главное различие сценариев предполагаемая причина в расхождении темпов охлаждения разных НЗ

Стадия нейтринного охлаждения

• 1 hr $\stackrel{<}{_\sim} t \stackrel{<}{_\sim} 10^5$ лет

•
$$T < (1-2)$$
 M₃B $< T_{\nu}^{\text{opac}}$

длина свободного пробега нейтрино \gg радиуса звезды

• Испускание нейтрино из всего объёма НЗ ⇔ информация о свойствах вещества во внутренней области НЗ

Основные процессы излучения нейтрино в НЗ

Однонуклонные процессы • Прямой Урка-процесс (DU) \vec{v} + \vec{v} Идёт лишь если может быть выполнено неравенства треугольника для $p_{F,n}$, *p*_{F,*p*}, *p*_{F,*e*} – запрещён для ферми-газа $\epsilon_{\nu}^{\mathrm{DU}} \sim 10^{27} T_9^6 \theta(n - n_{c,N}^{\mathrm{DU}}) \frac{\mathrm{spr}}{\mathrm{s}_{\nu} \mathrm{cm}^3}$ Пороговая плотность $n_{c,N}^{DU}$ сильно зависит от состава среды (УС) • Процессы на пионном конденсате (PU) $n \xrightarrow{ie} p \xrightarrow{i} n \xrightarrow{p_n}$ $\epsilon_{u}^{\pi_{c}^{-}} \sim (0.1-1) \epsilon_{u}^{\mathrm{DU}}$

Двухнуклонные процессы

• Тормозное излучение (NB):

$$n+n
ightarrow n+n+
u+ar{
u}+\ldots$$

• Модифицированный Урка-процесс (MU):

$$n+n \rightarrow n+p+e+\bar{\nu}+\ldots$$

Выбор взаимодействия G_{pN}, G_{nN} различен в различных сценариях охлаждения Модель обмена свободным пионом + ферми-жидкостное локальное взаимодействие: Friman Maxwell ApJ 232 (1979)

$$\begin{split} G_{pN,nN} \sim & \overbrace{}\\ \epsilon_{\nu}^{\rm MU} \sim 10^{21} T_9^8 \, \frac{\rm 3pr}{\rm c\cdot cm^3} \end{split}$$

Влияние сверхтекучести нуклонов

 $T < T_c^{nn}, T_c^{pp}$ – имеется спаривание нуклонов

Характерные значения плотностей и щелей спаривания

Для
$${}^{1}S_{0}$$
-спаривания $T_{c}^{nn,pp} \simeq 0.57 \Delta_{nn,pp}$

- nn, ${}^{1}S_{0}$ -спаривание : $n \lesssim (0.6 - 0.8) n_{0}$, область с малым вкладом в светимость
- nn, ${}^{3}P_{2}$ -спаривание :

$$0.8\,n_0 \stackrel{<}{_\sim} n \stackrel{<}{_\sim} (3-4)\,n_0,\,\Delta_{nn}^{3\,P_2} \sim 10\,$$
кэВ

• pp, 1S_0 -спаривание : $n \lesssim (2-4) n_0, \Delta \sim 1 \,\mathrm{M}$ эВ – наибольшее влияние

Подавление соответствующих процессов

- DU: $\epsilon_{\mu}^{\text{DU}} \stackrel{\rightarrow}{\sim} \epsilon_{\mu}^{\text{DU}} e^{-\max[\Delta_{nn}, \Delta_{pp}]/T}$
- MU: $\epsilon_{\nu}^{\text{DU}} \stackrel{\rightarrow}{\sim} \epsilon_{\nu}^{\text{DU}} e^{-(\Delta_{nn} + \Delta_{pp})/T}$
- ...

DU остаются наиболее интенсивными

Могут давать более существенный вклад, чем MU, вследствие большего фазового объёма

Сценарии описания охлаждения НЗ

1980-е годы: пульсары имеют близкие значения масс $M\simeq 1.3\,M_\odot$ согласно имевшимся расчётам взрывов сверхновых

УС не слишком сильно отличается от идеального газа: DU-процесс запрещён

«Стандартный» сценарий

- DU отсутствует
- Охлаждение определяется MU в модели FOPE
- Достоверно известные H3 среди SNR Vela и Crab
- $\bullet\,$ Описывает верхние пределы на T_s

Tsuruta Phys.Rept. 56 (1979)

Стандартный + экзотика

- Предположение о наличии [¬]-конденсата в НЗ
- Описывает уточнённое, относительно низкое значение верхнего предела на T_s[Crab]
- Friman Maxwell ApJ 232 (1979)
- ~1990–2000: новые и уточнённые данные о $T_s(t)$ + важность процесса PBF Flowers et al. ApJ 205 (1976), Voskresensky Senatorov ZhETP 90 (1986)

«Минимальный» сценарий	Минимальный + экзотика
DU отсутствуетОхлаждение за счёт MU и PBF	Наличие DU сильно зависит от поведения энергии симметрии Lattimer et al. PRL 21 (1991)
 Различие темпов охлаждения – различные концентрации элементов в атмосферах разных НЗ 	 Медленное охлаждение – МU Промежуточный темп – PBF Быстрый темп – DU M ≲ 1.4 M_☉ Potekhin et al. Space Science Reviews 191 (2015)
• $M \simeq 1.4 \ M_{\odot}$ Page et al. ApJ Suppl. 155 (2004)	

Распределения масс НЗ

Указания на различные значения масс НЗ

- Широкое распределение масс радиопульсаров
- Симуляции взрывов сверхновых
- Согласованное описание популяционного синтеза НЗ

Popov et al. A&A 448 (2006)

Kiziltan et al. ApJ 778 (2013)

Сценарий «охлаждения ядерной среды»

Теория ядерной ферми-жидкости: Migdal et al. Rev.Mod.Phys. 50 (1978)

Модификация свойств пиона и нуклонного взаимодействия

Учёт поляризации среды в пропагаторе пиона:

где затравочное взаимодействие явно учитывает дальнодействующий обмен пионом

⇒ существенное изменение спектральной функции пиона

А также...

- Учёт этих эффектов в процессах PBF и NB
- Учёт поправок к вершине слабого распада

Blaschke et al. A&A 424 (2004)

На примере МU-процесса:

Medium modified URCA (MMU)

Возникновение существенной зависимости от плотности:

• $n \lesssim n_0$: корреляционные поправки к \to уменьшение амплитуды по сравнению с FOPE

n > n₀: резкий рост амплитуды за счёт смягчения пионной моды

⇒ достаточно сильная зависимость от массы H3

• Процессы (б) и (в) дают лидирующий вклад при $n \gg n_0$, но отсутствуют в «стандартных» подходах

Охлаждение нуклонных НЗ: модель MKVOR*

Н. Grigorian, D.N. Voskresensky, К.А.М. Nucl.Phys. А 980 (2018) Основной вопрос – выбор «реалистичной» протонной щели

Выводы

«AO» – слишком интенсивное охлаждение Не описывает медленно охлаждающиеся объекты «CCDK» – слишком медленное охлаждение $1 < M/M_{\odot} \lesssim 1.8$ охлаждаются одинаково медленно «ЕЕНО» – оптимальное описание точек

Влияние гиперонов на картину охлаждения

DU-процесс на *Л*-гиперонах

- $M_{c\Lambda}^{\rm DU} = 1.429 \, M_{\odot}$
- Значительное ускорение охлаждения даже при малой вариации массы до $1.44 M_{\odot}$
- Константы слабого распада гиперонов $\sim 0.01 - 0.04$ от нуклонных
- Равномерное описание картины охлаждения

в случае достаточно большой протонной щели

6.6 6.4 ([X])⁰¹6.2 6.0 6.0 5.8 5.6 2 3 5 4 log10(t[yr])

«Плохая» щель CCDK

«Хорошая» щель ЕЕНО

Неабелево взаимодействие р-мезонов

Модель скрытой локальной симметрии – *р*-мезон как калибровочный бозон «массивный глюон»

$$\mathcal{L}_{\rho} = -\frac{1}{4}\vec{R}_{\mu\nu}\vec{R}^{\mu\nu} + \frac{1}{2}m_{\rho}^{2}\Phi_{\rho}^{2}\vec{\rho}_{\mu}\vec{\rho}^{\mu} - \sum_{b}g_{\rho b}\chi_{\rho b}\bar{\Psi}_{b}\gamma^{\mu}\vec{t}_{b}\vec{\rho}_{\mu}\Psi_{b} \,,$$

 $\vec{\rho}_{\mu\nu} = \partial_{\mu}\vec{\rho}_{\nu} - \partial_{\nu}\vec{\rho}_{\mu} + g'_{\rho}\chi'_{\rho}[\vec{\rho}_{\mu}\times\vec{\rho}_{\nu}] + \mu_{e}\delta_{\nu0}[\vec{n}_{3}\times\vec{\rho}_{\mu}] - \mu_{e}\delta_{\mu0}[\vec{n}_{3}\times\vec{\rho}_{\nu}] \,.$

Неабелева связь – поля $\rho_i^{(\pm)} \equiv (\rho_i^1 \pm i \rho_i^2)/\sqrt{2}$ приобретают источник $\rho_0^{(3)}$

Гибридные уравнения состояния

- Жёсткое адронное УС KVORcut02
- Кварковые VC String-Flip Model Kaltenborn et al. Phys.Rev. D 96(5) (2017)
- Различные плотности заряда в двух фазах
 Учёт глобальной электронейтральности и

поверхностного натяжения ↔ фаза «пасты»

Результаты

- Возникновение третьего семейства компактных звёзд с кварковым ядром
- \bullet Возможность существования «звёзд-близнецов»: $M_1=M_2,\,R_1>R_2$

Наблюдение таких объектов критической точки КХД

- Модельная зависимость отсутствуют для мягких адронных УС
- Возникновение пасты не разрушает такие конфигурации

Заключение

- В рамках релятивистских моделей среднего поля удалось решить загадки гиперонов и Δ -резонансов за счёт предположения об изменении масс и констант связи всех адронов в плотной среде
- Построено два семейства моделей этого типа, различающиеся поведением энергии симметрии как функции плотности, описывающие множество ограничений
- Показано успешное описание охлаждения НЗ, в том числе с учётом появления гиперонов и их вклада в нейтринную светимость НЗ
- Изучены возможности фазовых переходов 1 рода: *ρ*⁻-конденсация и фазовый переход в кварковую материю

За кадром

- Случай T>0 и описание наблюдаемых в столкновениях и
онов
- Свойства фазового перехода ядерная жидкость-газ
- Фазовые переходы в ИСМ

Дальнейшее развитие

- Обобщение на случай конечной температуры для применения в астрофизических симуляциях
- Микроскопическое обоснование полученных результатов
- Объединение с УС кваркового вещества во всех областях фазовой диаграммы КХД

Спасибо за внимание!